Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313442794> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4313442794 abstract "High-quality nanomechanical oscillators can sensitively probe force, mass, or displacement in experiments bridging the gap between the classical and quantum domain. Dynamics of these stochastic systems is inherently determined by the interplay between acting external forces, viscous dissipation, and random driving by the thermal environment. The importance of inertia then dictates that both position and momentum must, in principle, be known to fully describe the system, which makes its quantitative experimental characterization rather challenging. We introduce a general method of Bayesian inference of the force field and environmental parameters in stochastic inertial systems that operates solely on the time series of recorded noisy positions of the system. The method is first validated on simulated trajectories of model stochastic harmonic and anharmonic oscillators with damping. Subsequently, the method is applied to experimental trajectories of particles levitating in tailored optical fields and used to characterize the dynamics of particle motion in a nonlinear Duffing potential, a static or time-dependent double-well potential, and a non-conservative force field. The presented inference procedure does not make any simplifying assumptions about the nature or symmetry of the acting force field and provides robust results with trajectories two orders of magnitude shorter than those typically required by alternative inference schemes. In addition to being a powerful tool for quantitative data analysis, it can also guide experimentalists in choosing appropriate sampling frequency (at least 20 measured points per single characteristic period) and length of the measured trajectories (at least 10 periods) to estimate the force field and environmental characteristics with a desired accuracy and precision." @default.
- W4313442794 created "2023-01-06" @default.
- W4313442794 creator A5020812612 @default.
- W4313442794 creator A5040893162 @default.
- W4313442794 creator A5050275544 @default.
- W4313442794 creator A5052162988 @default.
- W4313442794 creator A5061192722 @default.
- W4313442794 creator A5069740803 @default.
- W4313442794 date "2022-12-21" @default.
- W4313442794 modified "2023-09-27" @default.
- W4313442794 title "Bayesian Estimation of Experimental Parameters in Stochastic Inertial Systems: Theory, Simulations, and Experiments with Objects Levitated in Vacuum" @default.
- W4313442794 doi "https://doi.org/10.48550/arxiv.2212.14043" @default.
- W4313442794 hasPublicationYear "2022" @default.
- W4313442794 type Work @default.
- W4313442794 citedByCount "0" @default.
- W4313442794 crossrefType "posted-content" @default.
- W4313442794 hasAuthorship W4313442794A5020812612 @default.
- W4313442794 hasAuthorship W4313442794A5040893162 @default.
- W4313442794 hasAuthorship W4313442794A5050275544 @default.
- W4313442794 hasAuthorship W4313442794A5052162988 @default.
- W4313442794 hasAuthorship W4313442794A5061192722 @default.
- W4313442794 hasAuthorship W4313442794A5069740803 @default.
- W4313442794 hasBestOaLocation W43134427941 @default.
- W4313442794 hasConcept C10138342 @default.
- W4313442794 hasConcept C10803110 @default.
- W4313442794 hasConcept C110407247 @default.
- W4313442794 hasConcept C112401455 @default.
- W4313442794 hasConcept C121332964 @default.
- W4313442794 hasConcept C121864883 @default.
- W4313442794 hasConcept C162324750 @default.
- W4313442794 hasConcept C173386949 @default.
- W4313442794 hasConcept C198082294 @default.
- W4313442794 hasConcept C41008148 @default.
- W4313442794 hasConcept C62520636 @default.
- W4313442794 hasConcept C74650414 @default.
- W4313442794 hasConceptScore W4313442794C10138342 @default.
- W4313442794 hasConceptScore W4313442794C10803110 @default.
- W4313442794 hasConceptScore W4313442794C110407247 @default.
- W4313442794 hasConceptScore W4313442794C112401455 @default.
- W4313442794 hasConceptScore W4313442794C121332964 @default.
- W4313442794 hasConceptScore W4313442794C121864883 @default.
- W4313442794 hasConceptScore W4313442794C162324750 @default.
- W4313442794 hasConceptScore W4313442794C173386949 @default.
- W4313442794 hasConceptScore W4313442794C198082294 @default.
- W4313442794 hasConceptScore W4313442794C41008148 @default.
- W4313442794 hasConceptScore W4313442794C62520636 @default.
- W4313442794 hasConceptScore W4313442794C74650414 @default.
- W4313442794 hasLocation W43134427941 @default.
- W4313442794 hasOpenAccess W4313442794 @default.
- W4313442794 hasPrimaryLocation W43134427941 @default.
- W4313442794 hasRelatedWork W119777567 @default.
- W4313442794 hasRelatedWork W2003790652 @default.
- W4313442794 hasRelatedWork W2035241175 @default.
- W4313442794 hasRelatedWork W2043624512 @default.
- W4313442794 hasRelatedWork W2141849163 @default.
- W4313442794 hasRelatedWork W2369670045 @default.
- W4313442794 hasRelatedWork W2621841330 @default.
- W4313442794 hasRelatedWork W3000912672 @default.
- W4313442794 hasRelatedWork W3190746265 @default.
- W4313442794 hasRelatedWork W4286236358 @default.
- W4313442794 isParatext "false" @default.
- W4313442794 isRetracted "false" @default.
- W4313442794 workType "article" @default.