Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313442939> ?p ?o ?g. }
- W4313442939 endingPage "108091" @default.
- W4313442939 startingPage "108091" @default.
- W4313442939 abstract "As key components of the human brain's neural network, synapses and neurons are important processing units that enable highly complex neuromorphic systems. Spiking neural network (SNN) is more powerful and efficient in terms of neuromorphic computing. Moreover, memristor-based neuromorphic computers can implement neural network algorithms more effectively than conventional hardware. However, the investigation on spiking neural network (SNN) based neuromorphic computing is still in the exploratory stage. Herein, a SNN based on ferroelectric Si:HfO2 film (∼ 6.8 nm) memristor was realized. The Si:HfO2-based memristor exhibits lower switching voltage (1.55/− 1.50 V) and super low power consumption (∼ 32.65 fJ). Additionally, it also shows superior conductance tunability and reliable realization of multiple synaptic functions. Especially, the highly linear conductance modulation of the Si:HfO2-based memristor results in a high accuracy of ∼ 96.23 % for handwritten digits. Spatiotemporal model recognition and unsupervised synaptic weight update functions were successfully implemented with the SNN constructed by these synaptic devices and artificial neuron models, which demonstrates the excellent adaptability and versatility of this SNN and paves the way for future neural network studies." @default.
- W4313442939 created "2023-01-06" @default.
- W4313442939 creator A5002481882 @default.
- W4313442939 creator A5003339295 @default.
- W4313442939 creator A5013847358 @default.
- W4313442939 creator A5017885171 @default.
- W4313442939 creator A5019564863 @default.
- W4313442939 creator A5020464532 @default.
- W4313442939 creator A5031487185 @default.
- W4313442939 creator A5031800620 @default.
- W4313442939 creator A5041358620 @default.
- W4313442939 creator A5058458085 @default.
- W4313442939 creator A5063158492 @default.
- W4313442939 creator A5074065192 @default.
- W4313442939 creator A5074144260 @default.
- W4313442939 creator A5079144123 @default.
- W4313442939 creator A5083331473 @default.
- W4313442939 creator A5084919966 @default.
- W4313442939 date "2023-03-01" @default.
- W4313442939 modified "2023-10-17" @default.
- W4313442939 title "A low-power Si:HfO2 ferroelectric tunnel memristor for spiking neural networks" @default.
- W4313442939 cites W1546762987 @default.
- W4313442939 cites W1625170149 @default.
- W4313442939 cites W1976983727 @default.
- W4313442939 cites W2005135813 @default.
- W4313442939 cites W2007978852 @default.
- W4313442939 cites W2094325813 @default.
- W4313442939 cites W2105904890 @default.
- W4313442939 cites W2107433900 @default.
- W4313442939 cites W2109596721 @default.
- W4313442939 cites W2129610161 @default.
- W4313442939 cites W2156640153 @default.
- W4313442939 cites W2158012362 @default.
- W4313442939 cites W2168779967 @default.
- W4313442939 cites W2171956063 @default.
- W4313442939 cites W2231575622 @default.
- W4313442939 cites W2317230785 @default.
- W4313442939 cites W2335992811 @default.
- W4313442939 cites W2345421161 @default.
- W4313442939 cites W2389556795 @default.
- W4313442939 cites W2564504830 @default.
- W4313442939 cites W2580605476 @default.
- W4313442939 cites W2743455512 @default.
- W4313442939 cites W2752445764 @default.
- W4313442939 cites W2753962205 @default.
- W4313442939 cites W2766725153 @default.
- W4313442939 cites W2771420577 @default.
- W4313442939 cites W2785141883 @default.
- W4313442939 cites W2792208628 @default.
- W4313442939 cites W2802801344 @default.
- W4313442939 cites W2887125861 @default.
- W4313442939 cites W2889162312 @default.
- W4313442939 cites W2897167746 @default.
- W4313442939 cites W2898323475 @default.
- W4313442939 cites W2901050347 @default.
- W4313442939 cites W2908269217 @default.
- W4313442939 cites W2922416786 @default.
- W4313442939 cites W2937490514 @default.
- W4313442939 cites W2952675348 @default.
- W4313442939 cites W2960912920 @default.
- W4313442939 cites W2968826214 @default.
- W4313442939 cites W3017253501 @default.
- W4313442939 cites W3031218447 @default.
- W4313442939 cites W3039560462 @default.
- W4313442939 cites W3091279877 @default.
- W4313442939 cites W3099086962 @default.
- W4313442939 cites W3178636247 @default.
- W4313442939 cites W3181963957 @default.
- W4313442939 cites W3197791098 @default.
- W4313442939 cites W3207765778 @default.
- W4313442939 cites W4220920825 @default.
- W4313442939 cites W4225596207 @default.
- W4313442939 cites W4281391548 @default.
- W4313442939 cites W3023430818 @default.
- W4313442939 doi "https://doi.org/10.1016/j.nanoen.2022.108091" @default.
- W4313442939 hasPublicationYear "2023" @default.
- W4313442939 type Work @default.
- W4313442939 citedByCount "11" @default.
- W4313442939 countsByYear W43134429392023 @default.
- W4313442939 crossrefType "journal-article" @default.
- W4313442939 hasAuthorship W4313442939A5002481882 @default.
- W4313442939 hasAuthorship W4313442939A5003339295 @default.
- W4313442939 hasAuthorship W4313442939A5013847358 @default.
- W4313442939 hasAuthorship W4313442939A5017885171 @default.
- W4313442939 hasAuthorship W4313442939A5019564863 @default.
- W4313442939 hasAuthorship W4313442939A5020464532 @default.
- W4313442939 hasAuthorship W4313442939A5031487185 @default.
- W4313442939 hasAuthorship W4313442939A5031800620 @default.
- W4313442939 hasAuthorship W4313442939A5041358620 @default.
- W4313442939 hasAuthorship W4313442939A5058458085 @default.
- W4313442939 hasAuthorship W4313442939A5063158492 @default.
- W4313442939 hasAuthorship W4313442939A5074065192 @default.
- W4313442939 hasAuthorship W4313442939A5074144260 @default.
- W4313442939 hasAuthorship W4313442939A5079144123 @default.
- W4313442939 hasAuthorship W4313442939A5083331473 @default.
- W4313442939 hasAuthorship W4313442939A5084919966 @default.
- W4313442939 hasConcept C11731999 @default.
- W4313442939 hasConcept C127413603 @default.