Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313443015> ?p ?o ?g. }
- W4313443015 endingPage "129245" @default.
- W4313443015 startingPage "129245" @default.
- W4313443015 abstract "Since input weights and hidden biases affect the overall performance of extreme learning machine (ELM) based on a single-hidden layer, two meta-heuristic algorithms of grey wolf optimizer (GWO) and particle swarm optimization (PSO) are adopted to optimize the input weights and hidden biases of ELM respectively in order to obtain higher classification accuracy. Namely, ELM-GWO and ELM-PSO are two enhanced ELM algorithms. Compared with the other existing techniques such as the traditional ELM and adaptive boosting (AdaBoost), the positioning performance of two enhanced ELM algorithms is analyzed by simulation and experiment in visible light positioning (VLP) systems. The experimental results show that the probabilities of two-dimensional (2D) positioning error being less than 10 cm for ELM, ELM-GWO, ELM-PSO, and AdaBoost are 84.25%, 90.25%, 93.25%, and 19.75%, respectively. And the probabilities of three-dimensional (3D) positioning error being less than 10 cm for ELM, ELM-GWO, ELM-PSO, and AdaBoost are 45.17%, 84.67%, 80.33%, and 16%, respectively. Both simulation and experimental results show that two enhanced ELM algorithms have better positioning performance and robustness. In addition, although increasing the number of iterations and the number of hidden neurons can effectively reduce the positioning error, the computational complexity is relatively high in large-scale fingerprint positioning scenarios. Therefore, a hybrid positioning method combining enhanced ELM and region division is further proposed. Both simulation and experimental results show that the proposed hybrid method can significantly improve the positioning accuracy while reducing the computational complexity." @default.
- W4313443015 created "2023-01-06" @default.
- W4313443015 creator A5004941085 @default.
- W4313443015 creator A5025990925 @default.
- W4313443015 creator A5043723766 @default.
- W4313443015 creator A5083223428 @default.
- W4313443015 date "2023-04-01" @default.
- W4313443015 modified "2023-09-27" @default.
- W4313443015 title "Accurate visible light positioning technique using extreme learning machine and meta-heuristic algorithm" @default.
- W4313443015 cites W1132038451 @default.
- W4313443015 cites W1412975512 @default.
- W4313443015 cites W1967315833 @default.
- W4313443015 cites W1976761711 @default.
- W4313443015 cites W1993717606 @default.
- W4313443015 cites W2002302337 @default.
- W4313443015 cites W2002621213 @default.
- W4313443015 cites W2002674327 @default.
- W4313443015 cites W2015517331 @default.
- W4313443015 cites W2016313659 @default.
- W4313443015 cites W2026131661 @default.
- W4313443015 cites W2026471620 @default.
- W4313443015 cites W2061438946 @default.
- W4313443015 cites W2144644352 @default.
- W4313443015 cites W2342765951 @default.
- W4313443015 cites W2398078376 @default.
- W4313443015 cites W2472133701 @default.
- W4313443015 cites W2525420961 @default.
- W4313443015 cites W2586130591 @default.
- W4313443015 cites W2608837339 @default.
- W4313443015 cites W2611838390 @default.
- W4313443015 cites W2749750670 @default.
- W4313443015 cites W2783888710 @default.
- W4313443015 cites W2791124749 @default.
- W4313443015 cites W2792805370 @default.
- W4313443015 cites W2808953383 @default.
- W4313443015 cites W2887669235 @default.
- W4313443015 cites W2895735188 @default.
- W4313443015 cites W2905485021 @default.
- W4313443015 cites W2915846188 @default.
- W4313443015 cites W2919032488 @default.
- W4313443015 cites W2945941376 @default.
- W4313443015 cites W2947882088 @default.
- W4313443015 cites W2981025102 @default.
- W4313443015 cites W2996886713 @default.
- W4313443015 cites W3009734089 @default.
- W4313443015 cites W3011901164 @default.
- W4313443015 cites W3021842317 @default.
- W4313443015 cites W3024361811 @default.
- W4313443015 cites W3036377842 @default.
- W4313443015 cites W3044409813 @default.
- W4313443015 cites W3047949064 @default.
- W4313443015 cites W3107841742 @default.
- W4313443015 cites W3135397223 @default.
- W4313443015 cites W3139362963 @default.
- W4313443015 cites W3153416580 @default.
- W4313443015 cites W3188596831 @default.
- W4313443015 cites W3212583327 @default.
- W4313443015 cites W368270136 @default.
- W4313443015 cites W4285228136 @default.
- W4313443015 doi "https://doi.org/10.1016/j.optcom.2022.129245" @default.
- W4313443015 hasPublicationYear "2023" @default.
- W4313443015 type Work @default.
- W4313443015 citedByCount "2" @default.
- W4313443015 countsByYear W43134430152023 @default.
- W4313443015 crossrefType "journal-article" @default.
- W4313443015 hasAuthorship W4313443015A5004941085 @default.
- W4313443015 hasAuthorship W4313443015A5025990925 @default.
- W4313443015 hasAuthorship W4313443015A5043723766 @default.
- W4313443015 hasAuthorship W4313443015A5083223428 @default.
- W4313443015 hasConcept C104317684 @default.
- W4313443015 hasConcept C11413529 @default.
- W4313443015 hasConcept C12267149 @default.
- W4313443015 hasConcept C141404830 @default.
- W4313443015 hasConcept C153180895 @default.
- W4313443015 hasConcept C154945302 @default.
- W4313443015 hasConcept C173801870 @default.
- W4313443015 hasConcept C185592680 @default.
- W4313443015 hasConcept C2780150128 @default.
- W4313443015 hasConcept C41008148 @default.
- W4313443015 hasConcept C46686674 @default.
- W4313443015 hasConcept C50644808 @default.
- W4313443015 hasConcept C55493867 @default.
- W4313443015 hasConcept C63479239 @default.
- W4313443015 hasConcept C85617194 @default.
- W4313443015 hasConceptScore W4313443015C104317684 @default.
- W4313443015 hasConceptScore W4313443015C11413529 @default.
- W4313443015 hasConceptScore W4313443015C12267149 @default.
- W4313443015 hasConceptScore W4313443015C141404830 @default.
- W4313443015 hasConceptScore W4313443015C153180895 @default.
- W4313443015 hasConceptScore W4313443015C154945302 @default.
- W4313443015 hasConceptScore W4313443015C173801870 @default.
- W4313443015 hasConceptScore W4313443015C185592680 @default.
- W4313443015 hasConceptScore W4313443015C2780150128 @default.
- W4313443015 hasConceptScore W4313443015C41008148 @default.
- W4313443015 hasConceptScore W4313443015C46686674 @default.
- W4313443015 hasConceptScore W4313443015C50644808 @default.
- W4313443015 hasConceptScore W4313443015C55493867 @default.
- W4313443015 hasConceptScore W4313443015C63479239 @default.