Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313443044> ?p ?o ?g. }
- W4313443044 endingPage "168581" @default.
- W4313443044 startingPage "168581" @default.
- W4313443044 abstract "Nano-scaled transition metal oxides are massively gaining an exciting horizon of research interest among material scientists by triggering scientific attention due to its prime advancements in physico-chemical, magneto-optical, electro-chemical, bio-medical and bio-compatible characteristics. The current work highlights the fabrication and formalisation of pure and X0.06Ni0.94O (X = Co, Fe, Cu) nanoparticles via bottom-up sol-gel pathway employing citric acid as the gelling factor. The crystallite size evaluated from X-Ray Diffraction (XRD) analysis decreased with respect to doping were estimated by successive systems among which Halder-Wagner (H-W) and Wagner-Agua (W-A) approach delivered prime results. Fourier Transform Infra-Red (FTIR) spectroscopy analysis regulated at room temperature in the mid infrared frequency continuum 400–4000 cm−1 confirmed the cubic conformation and the presence of predicted functional groups in the as-synthesized nanoparticles. The bandgap energy calculated from Ultra Violet-visible (UV–vis) spectroscopy is found to decrease for Co-NiO and Cu-NiO nanoparticles and increased for Fe doped NiO nanoparticles in comparison with the bandgap of pure NPs reasoned out by the Burstein-Moss shift. The device dependent parameter Urbach energy, and other pivotal optical parameters crucial in the fabrication of optoelectronic devices were evaluated. Surface morphological features and porous network of doped nanoparticles were investigated from Scanning Electron Microscopy (SEM) technique. Energy Dispersive X-ray (EDX) spectra ascertained the molecular matrix array and elemental composition in synthesized samples. The surface area measured from Brunauer-Emmett-Teller (BET) analysis revealed higher surface area (42 m2/g) for Fe-doped NiO nanoparticles than other counterparts. The thermal decomposition and stability of the pure and doped samples were analysed by Thermo-Gravimetric (TG) studies. The fundamental kinetic and thermodynamic parameters such as entropy, enthalpy, activation and Gibb’s free energy were elucidated through six different models viz., Coats-Redfern (CR), Piloyan-Novikava (PN), Horowitz-Metzger (HM), Van-Krevelen (VK), MacCallum-Tanner (MT) and Broido methods. Vibrating Sample Magnetometer (VSM) analysis coupled with the Law of Approach to Saturation (LAS) operandi extracted two critical magnetic criteria and the saturation magnetization is noticed to reduce with doping. The antibacterial and antifungal efficacies of the as-synthesized NPs were deeply discussed by portraying the nanoparticles-microbes interface. Iron and copper doped nickel oxide nanoparticles encountered favorable antimicrobial activity against pathogenic organisms. Furthermore, the bio-compatibility nature of the NPs was examined through hemolytic activity and the samples exhibited non-toxic behavior towards human cells till 50 μg/ml." @default.
- W4313443044 created "2023-01-06" @default.
- W4313443044 creator A5045286308 @default.
- W4313443044 creator A5055623637 @default.
- W4313443044 creator A5079222453 @default.
- W4313443044 creator A5082770245 @default.
- W4313443044 creator A5090459612 @default.
- W4313443044 date "2023-03-01" @default.
- W4313443044 modified "2023-09-26" @default.
- W4313443044 title "Probing into the physicochemical consequences of pristine and X0.06Ni0.94O (X = Co, Fe, Cu) nanoparticles for bactericidal, antifungal and hemolytic competency" @default.
- W4313443044 cites W1975061934 @default.
- W4313443044 cites W1980001854 @default.
- W4313443044 cites W1980595924 @default.
- W4313443044 cites W1988991434 @default.
- W4313443044 cites W1992317037 @default.
- W4313443044 cites W2011366622 @default.
- W4313443044 cites W2014976987 @default.
- W4313443044 cites W2040875144 @default.
- W4313443044 cites W2053460728 @default.
- W4313443044 cites W2059161112 @default.
- W4313443044 cites W2061158367 @default.
- W4313443044 cites W2079732855 @default.
- W4313443044 cites W2109822559 @default.
- W4313443044 cites W2148151333 @default.
- W4313443044 cites W2157135557 @default.
- W4313443044 cites W2169605484 @default.
- W4313443044 cites W2619094627 @default.
- W4313443044 cites W2767030043 @default.
- W4313443044 cites W2793090745 @default.
- W4313443044 cites W2796886690 @default.
- W4313443044 cites W2802048915 @default.
- W4313443044 cites W2899134984 @default.
- W4313443044 cites W2901273961 @default.
- W4313443044 cites W2912477480 @default.
- W4313443044 cites W2921404821 @default.
- W4313443044 cites W2930730603 @default.
- W4313443044 cites W2931144334 @default.
- W4313443044 cites W2943961714 @default.
- W4313443044 cites W2947464430 @default.
- W4313443044 cites W2955547009 @default.
- W4313443044 cites W2969655219 @default.
- W4313443044 cites W2969684275 @default.
- W4313443044 cites W2972830711 @default.
- W4313443044 cites W2980694149 @default.
- W4313443044 cites W2982878933 @default.
- W4313443044 cites W2983740296 @default.
- W4313443044 cites W2987483713 @default.
- W4313443044 cites W2989138336 @default.
- W4313443044 cites W2989307275 @default.
- W4313443044 cites W2994873929 @default.
- W4313443044 cites W2995101489 @default.
- W4313443044 cites W2996975978 @default.
- W4313443044 cites W2998494267 @default.
- W4313443044 cites W3009715329 @default.
- W4313443044 cites W3016078642 @default.
- W4313443044 cites W3040678526 @default.
- W4313443044 cites W3044943803 @default.
- W4313443044 cites W3081615768 @default.
- W4313443044 cites W3082981652 @default.
- W4313443044 cites W3084159093 @default.
- W4313443044 cites W3084845136 @default.
- W4313443044 cites W3087817426 @default.
- W4313443044 cites W3090041670 @default.
- W4313443044 cites W3097357890 @default.
- W4313443044 cites W3103737848 @default.
- W4313443044 cites W3113372356 @default.
- W4313443044 cites W3128544937 @default.
- W4313443044 cites W3133877885 @default.
- W4313443044 cites W3139513515 @default.
- W4313443044 cites W3172202880 @default.
- W4313443044 cites W3176801564 @default.
- W4313443044 cites W3177331232 @default.
- W4313443044 cites W3184322224 @default.
- W4313443044 cites W3202108318 @default.
- W4313443044 cites W3207369629 @default.
- W4313443044 cites W3208691734 @default.
- W4313443044 cites W3209337133 @default.
- W4313443044 cites W4200543559 @default.
- W4313443044 cites W4200570428 @default.
- W4313443044 cites W4206324991 @default.
- W4313443044 cites W4206560866 @default.
- W4313443044 cites W4221121611 @default.
- W4313443044 cites W4224279598 @default.
- W4313443044 cites W4280579254 @default.
- W4313443044 doi "https://doi.org/10.1016/j.jallcom.2022.168581" @default.
- W4313443044 hasPublicationYear "2023" @default.
- W4313443044 type Work @default.
- W4313443044 citedByCount "2" @default.
- W4313443044 countsByYear W43134430442023 @default.
- W4313443044 crossrefType "journal-article" @default.
- W4313443044 hasAuthorship W4313443044A5045286308 @default.
- W4313443044 hasAuthorship W4313443044A5055623637 @default.
- W4313443044 hasAuthorship W4313443044A5079222453 @default.
- W4313443044 hasAuthorship W4313443044A5082770245 @default.
- W4313443044 hasAuthorship W4313443044A5090459612 @default.
- W4313443044 hasConcept C113196181 @default.
- W4313443044 hasConcept C121332964 @default.
- W4313443044 hasConcept C127413603 @default.