Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313443433> ?p ?o ?g. }
- W4313443433 endingPage "130065" @default.
- W4313443433 startingPage "130065" @default.
- W4313443433 abstract "The present study investigates the possibility of using random forest (RF) algorithm for prediction of hydraulic conductivity of coarse-sized granular material. Meanwhile, the conventional soft computing methods named artificial neural network (ANN) and adaptive network-based fuzzy inference system (ANFIS) are considered to assess the robustness of the established approach. The characterized properties related to the particle size distribution as well as the air void content are utilized to predict the hydraulic conductivity coefficient. In addition, owing to the direct effect of the applied hydraulic head on the measured values of water flow velocity, the hydraulic gradient is also characterized as an influential parameter. The statistical comparison between the prediction capability of the RF and the results of ANN and ANFIS models corroborates the robustness of the developed procedure based on the machine learning algorithm to indirectly predict the hydraulic conductivity of the provided porous media. The results of parametric analysis mainly demonstrate that the air void content among aggregates is by far the most influential factor affecting the permeability of granular media made of coarse-sized aggregate." @default.
- W4313443433 created "2023-01-06" @default.
- W4313443433 creator A5016565014 @default.
- W4313443433 creator A5073001779 @default.
- W4313443433 date "2023-02-01" @default.
- W4313443433 modified "2023-09-24" @default.
- W4313443433 title "Prediction of hydraulic conductivity of porous granular media by establishment of random forest algorithm" @default.
- W4313443433 cites W1749887058 @default.
- W4313443433 cites W1942689375 @default.
- W4313443433 cites W1997945763 @default.
- W4313443433 cites W2015160447 @default.
- W4313443433 cites W2019207321 @default.
- W4313443433 cites W2032270680 @default.
- W4313443433 cites W2040219465 @default.
- W4313443433 cites W2041270352 @default.
- W4313443433 cites W2076669121 @default.
- W4313443433 cites W2077458446 @default.
- W4313443433 cites W2079066833 @default.
- W4313443433 cites W2081328954 @default.
- W4313443433 cites W2081912173 @default.
- W4313443433 cites W2094199595 @default.
- W4313443433 cites W2099849189 @default.
- W4313443433 cites W2257346832 @default.
- W4313443433 cites W2468700497 @default.
- W4313443433 cites W2522546700 @default.
- W4313443433 cites W2587070855 @default.
- W4313443433 cites W2763902367 @default.
- W4313443433 cites W2771419474 @default.
- W4313443433 cites W2789573393 @default.
- W4313443433 cites W2912071149 @default.
- W4313443433 cites W2921936075 @default.
- W4313443433 cites W2925700532 @default.
- W4313443433 cites W2964938350 @default.
- W4313443433 cites W2977603950 @default.
- W4313443433 cites W2980539464 @default.
- W4313443433 cites W2993502097 @default.
- W4313443433 cites W2999576606 @default.
- W4313443433 cites W3003582000 @default.
- W4313443433 cites W3009571191 @default.
- W4313443433 cites W3033157402 @default.
- W4313443433 cites W3092318747 @default.
- W4313443433 cites W3098498618 @default.
- W4313443433 cites W3099932917 @default.
- W4313443433 cites W4235256446 @default.
- W4313443433 doi "https://doi.org/10.1016/j.conbuildmat.2022.130065" @default.
- W4313443433 hasPublicationYear "2023" @default.
- W4313443433 type Work @default.
- W4313443433 citedByCount "1" @default.
- W4313443433 countsByYear W43134434332023 @default.
- W4313443433 crossrefType "journal-article" @default.
- W4313443433 hasAuthorship W4313443433A5016565014 @default.
- W4313443433 hasAuthorship W4313443433A5073001779 @default.
- W4313443433 hasConcept C104317684 @default.
- W4313443433 hasConcept C105569014 @default.
- W4313443433 hasConcept C105795698 @default.
- W4313443433 hasConcept C11413529 @default.
- W4313443433 hasConcept C117251300 @default.
- W4313443433 hasConcept C119857082 @default.
- W4313443433 hasConcept C120882062 @default.
- W4313443433 hasConcept C121332964 @default.
- W4313443433 hasConcept C127413603 @default.
- W4313443433 hasConcept C131540310 @default.
- W4313443433 hasConcept C140073362 @default.
- W4313443433 hasConcept C154945302 @default.
- W4313443433 hasConcept C159390177 @default.
- W4313443433 hasConcept C159750122 @default.
- W4313443433 hasConcept C159985019 @default.
- W4313443433 hasConcept C164374781 @default.
- W4313443433 hasConcept C169258074 @default.
- W4313443433 hasConcept C185592680 @default.
- W4313443433 hasConcept C186060115 @default.
- W4313443433 hasConcept C186108316 @default.
- W4313443433 hasConcept C187320778 @default.
- W4313443433 hasConcept C192562407 @default.
- W4313443433 hasConcept C195975749 @default.
- W4313443433 hasConcept C33923547 @default.
- W4313443433 hasConcept C39432304 @default.
- W4313443433 hasConcept C41008148 @default.
- W4313443433 hasConcept C41625074 @default.
- W4313443433 hasConcept C50644808 @default.
- W4313443433 hasConcept C54355233 @default.
- W4313443433 hasConcept C55493867 @default.
- W4313443433 hasConcept C58166 @default.
- W4313443433 hasConcept C62520636 @default.
- W4313443433 hasConcept C63184880 @default.
- W4313443433 hasConcept C63479239 @default.
- W4313443433 hasConcept C6648577 @default.
- W4313443433 hasConcept C86803240 @default.
- W4313443433 hasConceptScore W4313443433C104317684 @default.
- W4313443433 hasConceptScore W4313443433C105569014 @default.
- W4313443433 hasConceptScore W4313443433C105795698 @default.
- W4313443433 hasConceptScore W4313443433C11413529 @default.
- W4313443433 hasConceptScore W4313443433C117251300 @default.
- W4313443433 hasConceptScore W4313443433C119857082 @default.
- W4313443433 hasConceptScore W4313443433C120882062 @default.
- W4313443433 hasConceptScore W4313443433C121332964 @default.
- W4313443433 hasConceptScore W4313443433C127413603 @default.
- W4313443433 hasConceptScore W4313443433C131540310 @default.