Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313443719> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4313443719 endingPage "365" @default.
- W4313443719 startingPage "351" @default.
- W4313443719 abstract "In India, agriculture assumes a significant part in view of the rising number of individuals and extended interest in food. In the world, Wheat is the third most gathered and consumed grain. One critical effect on wheat crop yield is a disease because by parasites, contaminations, and microorganisms. So that is the justification behind a huge piece of the wheat crop becoming spoiled. Multiple dozen wheat contaminations are risky to the yields, so it is very important to detect these diseases at the exact time. The determination of the diseases is done with a visual investigation by specialists and an organic assessment is a subsequent option if fundamental. It is an extremely tedious and costly procedure. Deep learning is the only way by which one can solve such problems, this branch additionally considers the early recognition of wheat diseases by applying convolutional neural networks (CNNs) close to the well-known models. In the current work, we consider four different classes of wheat pictures which contain tan spot, fusarium head blight, stem rust, and healthy wheat. We execute the different CNN models to the gathered dataset. We use number of parameters to train these models are: loss function = “categorical cross-entropy”, activation function = “softmax”, optimizer = “adam”, batch size = 64, epochs = 80. After applying these models to the dataset we examine that the ResNet model delivered the best calculable outcomes. The proposed approach has gotten the most noteworthy classification exactness of 98% utilizing the ResNet50 model when contrasted with MobileNet, and DenseNet models. This shows that deep learning has shown generally excellent execution for the order of various illnesses. We did this execution with the assistance of google colab." @default.
- W4313443719 created "2023-01-06" @default.
- W4313443719 creator A5054915520 @default.
- W4313443719 creator A5059199694 @default.
- W4313443719 date "2023-01-01" @default.
- W4313443719 modified "2023-10-16" @default.
- W4313443719 title "Fully Automatic Wheat Disease Detection System by Using Different CNN Models" @default.
- W4313443719 cites W1966971005 @default.
- W4313443719 cites W2032813979 @default.
- W4313443719 cites W2101391185 @default.
- W4313443719 cites W2145887856 @default.
- W4313443719 cites W2490548105 @default.
- W4313443719 cites W2734648642 @default.
- W4313443719 cites W2790979755 @default.
- W4313443719 cites W2805772477 @default.
- W4313443719 cites W2811094823 @default.
- W4313443719 cites W2942231644 @default.
- W4313443719 cites W2944599236 @default.
- W4313443719 cites W2945461009 @default.
- W4313443719 cites W2952913777 @default.
- W4313443719 cites W2955236000 @default.
- W4313443719 cites W2975915077 @default.
- W4313443719 cites W3007180251 @default.
- W4313443719 cites W3009960949 @default.
- W4313443719 cites W3097040096 @default.
- W4313443719 cites W3113103968 @default.
- W4313443719 cites W3126518358 @default.
- W4313443719 cites W3154472415 @default.
- W4313443719 cites W3155966371 @default.
- W4313443719 cites W3156808701 @default.
- W4313443719 cites W3158994220 @default.
- W4313443719 cites W3174396058 @default.
- W4313443719 cites W3188696605 @default.
- W4313443719 cites W3190708431 @default.
- W4313443719 cites W4210810204 @default.
- W4313443719 cites W4225784317 @default.
- W4313443719 doi "https://doi.org/10.1007/978-981-19-5443-6_26" @default.
- W4313443719 hasPublicationYear "2023" @default.
- W4313443719 type Work @default.
- W4313443719 citedByCount "5" @default.
- W4313443719 countsByYear W43134437192023 @default.
- W4313443719 crossrefType "book-chapter" @default.
- W4313443719 hasAuthorship W4313443719A5054915520 @default.
- W4313443719 hasAuthorship W4313443719A5059199694 @default.
- W4313443719 hasConcept C108583219 @default.
- W4313443719 hasConcept C119857082 @default.
- W4313443719 hasConcept C127413603 @default.
- W4313443719 hasConcept C14036430 @default.
- W4313443719 hasConcept C153180895 @default.
- W4313443719 hasConcept C154945302 @default.
- W4313443719 hasConcept C188441871 @default.
- W4313443719 hasConcept C2944601119 @default.
- W4313443719 hasConcept C41008148 @default.
- W4313443719 hasConcept C5274069 @default.
- W4313443719 hasConcept C78458016 @default.
- W4313443719 hasConcept C81363708 @default.
- W4313443719 hasConcept C86803240 @default.
- W4313443719 hasConcept C88463610 @default.
- W4313443719 hasConceptScore W4313443719C108583219 @default.
- W4313443719 hasConceptScore W4313443719C119857082 @default.
- W4313443719 hasConceptScore W4313443719C127413603 @default.
- W4313443719 hasConceptScore W4313443719C14036430 @default.
- W4313443719 hasConceptScore W4313443719C153180895 @default.
- W4313443719 hasConceptScore W4313443719C154945302 @default.
- W4313443719 hasConceptScore W4313443719C188441871 @default.
- W4313443719 hasConceptScore W4313443719C2944601119 @default.
- W4313443719 hasConceptScore W4313443719C41008148 @default.
- W4313443719 hasConceptScore W4313443719C5274069 @default.
- W4313443719 hasConceptScore W4313443719C78458016 @default.
- W4313443719 hasConceptScore W4313443719C81363708 @default.
- W4313443719 hasConceptScore W4313443719C86803240 @default.
- W4313443719 hasConceptScore W4313443719C88463610 @default.
- W4313443719 hasLocation W43134437191 @default.
- W4313443719 hasOpenAccess W4313443719 @default.
- W4313443719 hasPrimaryLocation W43134437191 @default.
- W4313443719 hasRelatedWork W2731899572 @default.
- W4313443719 hasRelatedWork W2743258233 @default.
- W4313443719 hasRelatedWork W2913997398 @default.
- W4313443719 hasRelatedWork W2915754718 @default.
- W4313443719 hasRelatedWork W2977314777 @default.
- W4313443719 hasRelatedWork W3091976719 @default.
- W4313443719 hasRelatedWork W3133861977 @default.
- W4313443719 hasRelatedWork W4200173597 @default.
- W4313443719 hasRelatedWork W4312417841 @default.
- W4313443719 hasRelatedWork W4321369474 @default.
- W4313443719 isParatext "false" @default.
- W4313443719 isRetracted "false" @default.
- W4313443719 workType "book-chapter" @default.