Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313443846> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4313443846 endingPage "94" @default.
- W4313443846 startingPage "93" @default.
- W4313443846 abstract "Machine learning has been shown to be effective for QT analysis, especially in patients with both acquired and congenital long QT syndrome. The relationship between QT and RR intervals (QT-dynamicity) has not yet been used for the detection and forecast of atrial fibrillation episodes. Study the importance of ECG delineation features and especially QT-dynamicity for the detection and forecast of paroxysmal AF episodes. 24H Holter ECG recordings from 88 patients were used, allowing an in-depth analysis of the transition from sinus rhythm to the AF episodes. Raw ECG signals were delineated using a wavelet-based signal processing technique. The dataset is composed of more than 17 million values for each patient. A selection of delineation features was performed from a statistical analysis and literature review. A total of 44 ECG features were chosen (e.g. interval and wave durations and amplitude). A machine learning model (XGBoost) was trained with a Bayesian selection of hyperparameters for different windows. We used a 5-fold cross-validation method for model validation. Mean age of the patients was 75.9 ± 11.9 (range 50–99), number of episodes per patient was 2.3 ± 2.2 (range 1–11) and CHA2DS2-VASc score was 2.9 ± 1.7 (range 1–9). For the detection, we obtained an area under the receiver operating curve (AUROC) of 0.988 (CI 95%: 0.987–0.989) and an accuracy of 95% using a 30s window. For the forecast, we obtained an AUROC of 0.739 (0.712–0.766) and an accuracy of 74% using a 120s window. For the detection, features related to RR intervals were the most important, followed by those on QT intervals. For the forecast, QT dynamicity as assessed by the Spearman's correlation of the QT-RR slope was the best predictor (Fig. 1). In addition to RR intervals, QT intervals and QT-dynamicity are important predictors for AF detection and short-term forecast. These data suggest that ventricular repolarization changes play a relevant role in the triggering of AF episodes." @default.
- W4313443846 created "2023-01-06" @default.
- W4313443846 creator A5003014352 @default.
- W4313443846 creator A5055564095 @default.
- W4313443846 creator A5061552895 @default.
- W4313443846 creator A5067148487 @default.
- W4313443846 creator A5083454210 @default.
- W4313443846 date "2023-01-01" @default.
- W4313443846 modified "2023-09-26" @default.
- W4313443846 title "QT-dynamicity for atrial fibrillation detection and short-term forecast using machine learning" @default.
- W4313443846 doi "https://doi.org/10.1016/j.acvdsp.2022.10.179" @default.
- W4313443846 hasPublicationYear "2023" @default.
- W4313443846 type Work @default.
- W4313443846 citedByCount "0" @default.
- W4313443846 crossrefType "journal-article" @default.
- W4313443846 hasAuthorship W4313443846A5003014352 @default.
- W4313443846 hasAuthorship W4313443846A5055564095 @default.
- W4313443846 hasAuthorship W4313443846A5061552895 @default.
- W4313443846 hasAuthorship W4313443846A5067148487 @default.
- W4313443846 hasAuthorship W4313443846A5083454210 @default.
- W4313443846 hasConcept C118441451 @default.
- W4313443846 hasConcept C119857082 @default.
- W4313443846 hasConcept C126322002 @default.
- W4313443846 hasConcept C154945302 @default.
- W4313443846 hasConcept C164705383 @default.
- W4313443846 hasConcept C2775914520 @default.
- W4313443846 hasConcept C2779161974 @default.
- W4313443846 hasConcept C2908745016 @default.
- W4313443846 hasConcept C41008148 @default.
- W4313443846 hasConcept C44249647 @default.
- W4313443846 hasConcept C58471807 @default.
- W4313443846 hasConcept C71924100 @default.
- W4313443846 hasConcept C8642999 @default.
- W4313443846 hasConceptScore W4313443846C118441451 @default.
- W4313443846 hasConceptScore W4313443846C119857082 @default.
- W4313443846 hasConceptScore W4313443846C126322002 @default.
- W4313443846 hasConceptScore W4313443846C154945302 @default.
- W4313443846 hasConceptScore W4313443846C164705383 @default.
- W4313443846 hasConceptScore W4313443846C2775914520 @default.
- W4313443846 hasConceptScore W4313443846C2779161974 @default.
- W4313443846 hasConceptScore W4313443846C2908745016 @default.
- W4313443846 hasConceptScore W4313443846C41008148 @default.
- W4313443846 hasConceptScore W4313443846C44249647 @default.
- W4313443846 hasConceptScore W4313443846C58471807 @default.
- W4313443846 hasConceptScore W4313443846C71924100 @default.
- W4313443846 hasConceptScore W4313443846C8642999 @default.
- W4313443846 hasIssue "1" @default.
- W4313443846 hasLocation W43134438461 @default.
- W4313443846 hasOpenAccess W4313443846 @default.
- W4313443846 hasPrimaryLocation W43134438461 @default.
- W4313443846 hasRelatedWork W1972651039 @default.
- W4313443846 hasRelatedWork W1973573059 @default.
- W4313443846 hasRelatedWork W1974061424 @default.
- W4313443846 hasRelatedWork W2022000083 @default.
- W4313443846 hasRelatedWork W2082278611 @default.
- W4313443846 hasRelatedWork W2317055961 @default.
- W4313443846 hasRelatedWork W2362166015 @default.
- W4313443846 hasRelatedWork W3213905285 @default.
- W4313443846 hasRelatedWork W3215129447 @default.
- W4313443846 hasRelatedWork W4295309597 @default.
- W4313443846 hasVolume "15" @default.
- W4313443846 isParatext "false" @default.
- W4313443846 isRetracted "false" @default.
- W4313443846 workType "article" @default.