Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313444178> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4313444178 endingPage "942" @default.
- W4313444178 startingPage "931" @default.
- W4313444178 abstract "Agriculture is essential for human existence, and it plays an important role in the world economy. There is increasing demand for food to feed the ever-increasing world population. Agriculture is affected by climate changes along with weed control. Weeds are unwanted plants that compete with plants for nutrition, and sunlight and adversely affect crop quality and production. Manual weeding is a tedious and labor-intensive task because both crop and weed look the same by visual appearance. Artificial intelligence techniques like deep learning can address this problem of crop and weed classification. In this research work, a deep learning-based classification system has been proposed to classify the weed and crop based on RGB images. We investigated two popular deep learning-based transfer learning models, namely DenseNet169 and MobileNetV2, and assessed their performances for crop and weed recognition. These models perform excellently with an accuracy of 97.14 and 94.92%, respectively. The significant accuracy results make the model an important tool for farmers to identify weeds." @default.
- W4313444178 created "2023-01-06" @default.
- W4313444178 creator A5003934586 @default.
- W4313444178 creator A5037033692 @default.
- W4313444178 date "2023-01-01" @default.
- W4313444178 modified "2023-10-16" @default.
- W4313444178 title "Using Deep Learning Models for Crop and Weed Classification at Early Stage" @default.
- W4313444178 cites W1849277567 @default.
- W4313444178 cites W1973788747 @default.
- W4313444178 cites W2010036662 @default.
- W4313444178 cites W2112796928 @default.
- W4313444178 cites W2117539524 @default.
- W4313444178 cites W2394911398 @default.
- W4313444178 cites W2531409750 @default.
- W4313444178 cites W2565516711 @default.
- W4313444178 cites W2586062600 @default.
- W4313444178 cites W2607941059 @default.
- W4313444178 cites W2781967587 @default.
- W4313444178 cites W2790979755 @default.
- W4313444178 cites W2885770726 @default.
- W4313444178 cites W2913227116 @default.
- W4313444178 cites W2962949934 @default.
- W4313444178 cites W2963163009 @default.
- W4313444178 cites W2963446712 @default.
- W4313444178 cites W3006557342 @default.
- W4313444178 cites W3022353848 @default.
- W4313444178 cites W3045846989 @default.
- W4313444178 cites W3046210524 @default.
- W4313444178 cites W4242392184 @default.
- W4313444178 doi "https://doi.org/10.1007/978-981-19-5443-6_69" @default.
- W4313444178 hasPublicationYear "2023" @default.
- W4313444178 type Work @default.
- W4313444178 citedByCount "0" @default.
- W4313444178 crossrefType "book-chapter" @default.
- W4313444178 hasAuthorship W4313444178A5003934586 @default.
- W4313444178 hasAuthorship W4313444178A5037033692 @default.
- W4313444178 hasConcept C108583219 @default.
- W4313444178 hasConcept C118518473 @default.
- W4313444178 hasConcept C119857082 @default.
- W4313444178 hasConcept C127413603 @default.
- W4313444178 hasConcept C137580998 @default.
- W4313444178 hasConcept C147273371 @default.
- W4313444178 hasConcept C150899416 @default.
- W4313444178 hasConcept C154945302 @default.
- W4313444178 hasConcept C18903297 @default.
- W4313444178 hasConcept C205649164 @default.
- W4313444178 hasConcept C2775891814 @default.
- W4313444178 hasConcept C41008148 @default.
- W4313444178 hasConcept C6557445 @default.
- W4313444178 hasConcept C86803240 @default.
- W4313444178 hasConcept C88463610 @default.
- W4313444178 hasConcept C97137747 @default.
- W4313444178 hasConceptScore W4313444178C108583219 @default.
- W4313444178 hasConceptScore W4313444178C118518473 @default.
- W4313444178 hasConceptScore W4313444178C119857082 @default.
- W4313444178 hasConceptScore W4313444178C127413603 @default.
- W4313444178 hasConceptScore W4313444178C137580998 @default.
- W4313444178 hasConceptScore W4313444178C147273371 @default.
- W4313444178 hasConceptScore W4313444178C150899416 @default.
- W4313444178 hasConceptScore W4313444178C154945302 @default.
- W4313444178 hasConceptScore W4313444178C18903297 @default.
- W4313444178 hasConceptScore W4313444178C205649164 @default.
- W4313444178 hasConceptScore W4313444178C2775891814 @default.
- W4313444178 hasConceptScore W4313444178C41008148 @default.
- W4313444178 hasConceptScore W4313444178C6557445 @default.
- W4313444178 hasConceptScore W4313444178C86803240 @default.
- W4313444178 hasConceptScore W4313444178C88463610 @default.
- W4313444178 hasConceptScore W4313444178C97137747 @default.
- W4313444178 hasLocation W43134441781 @default.
- W4313444178 hasOpenAccess W4313444178 @default.
- W4313444178 hasPrimaryLocation W43134441781 @default.
- W4313444178 hasRelatedWork W2889705046 @default.
- W4313444178 hasRelatedWork W2946016983 @default.
- W4313444178 hasRelatedWork W2960456850 @default.
- W4313444178 hasRelatedWork W3192840557 @default.
- W4313444178 hasRelatedWork W4223943233 @default.
- W4313444178 hasRelatedWork W4312200629 @default.
- W4313444178 hasRelatedWork W4317565044 @default.
- W4313444178 hasRelatedWork W4380075502 @default.
- W4313444178 hasRelatedWork W4382286161 @default.
- W4313444178 hasRelatedWork W4386213806 @default.
- W4313444178 isParatext "false" @default.
- W4313444178 isRetracted "false" @default.
- W4313444178 workType "book-chapter" @default.