Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313444291> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4313444291 endingPage "104565" @default.
- W4313444291 startingPage "104565" @default.
- W4313444291 abstract "The automatic segmentation of pulmonary vessels from CT images has important significance. However, accurately annotating pulmonary vessels directly in non-contrast CT (NCCT) images is complex and time-consuming. This study aims to draw annotations with contrast-enhanced CT (CECT) images and train a deep-learning model for segmenting pulmonary vessels from NCCT images. Two datasets with 63 CT scans were collected. Dataset D1 included 17 cases annotated in CECT images, 10 cases annotated in NCCT images, and 12 NCCT scans. Dataset D2 consisted of 12 CECT and 12 NCCT scans with annotations. First, annotations drawn in CECT images (Dataset D1) are transferred to NCCT images via spatial registration. Second, a CE-NC-VesselSegNet is proposed and trained using the transferred annotations to segment pulmonary vessels from NCCT images. Finally, the CE-NC-VesselSegNet is evaluated and compared with its counterparts. After registration, the maximum and root mean square error between CECT and NCCT images decreases, while the structural similarity and peak signal-to-noise ratio increase. CE-NC-VesselSegNet can accurately segment pulmonary vessels from NCCT images with a Dice of 0.856. In the external validation using Dataset D2, the CE-NC-VesselSegNet achieves a Dice of 0.738, which is higher compared with that of NC-VesselSegNet trained by D2. Visual inspections have shown that CE-NC-VesselSegNet enables more accurate and continuous segmentation compared with its counterpart. Annotations of pulmonary vessels drawn in CECT images can be transferred to NCCT images via spatial registration. Using these transferred annotations of high quality, a CE-NC-VesselSegNet can be trained to segment pulmonary vessels from NCCT images." @default.
- W4313444291 created "2023-01-06" @default.
- W4313444291 creator A5003777802 @default.
- W4313444291 creator A5010512539 @default.
- W4313444291 creator A5046147392 @default.
- W4313444291 creator A5068017913 @default.
- W4313444291 creator A5074942094 @default.
- W4313444291 creator A5079004601 @default.
- W4313444291 creator A5086578270 @default.
- W4313444291 date "2023-04-01" @default.
- W4313444291 modified "2023-10-17" @default.
- W4313444291 title "CE-NC-VesselSegNet: Supervised by contrast-enhanced CT images but utilized to segment pulmonary vessels from non-contrast-enhanced CT images" @default.
- W4313444291 cites W1964459327 @default.
- W4313444291 cites W1993258083 @default.
- W4313444291 cites W1998378411 @default.
- W4313444291 cites W2009911194 @default.
- W4313444291 cites W2040934840 @default.
- W4313444291 cites W2060762784 @default.
- W4313444291 cites W2098374142 @default.
- W4313444291 cites W2133287637 @default.
- W4313444291 cites W2143728447 @default.
- W4313444291 cites W2152978524 @default.
- W4313444291 cites W2165788364 @default.
- W4313444291 cites W2213701027 @default.
- W4313444291 cites W2432555109 @default.
- W4313444291 cites W2569088469 @default.
- W4313444291 cites W2575552683 @default.
- W4313444291 cites W2590913073 @default.
- W4313444291 cites W2642748304 @default.
- W4313444291 cites W2800884849 @default.
- W4313444291 cites W2804260597 @default.
- W4313444291 cites W2891894562 @default.
- W4313444291 cites W2902537990 @default.
- W4313444291 cites W2951776021 @default.
- W4313444291 cites W3107469378 @default.
- W4313444291 cites W3112701542 @default.
- W4313444291 cites W3129366692 @default.
- W4313444291 cites W3201808689 @default.
- W4313444291 cites W3206402530 @default.
- W4313444291 cites W3207465656 @default.
- W4313444291 cites W4205934348 @default.
- W4313444291 cites W4210654174 @default.
- W4313444291 cites W4220672190 @default.
- W4313444291 cites W4248672585 @default.
- W4313444291 cites W4283640391 @default.
- W4313444291 doi "https://doi.org/10.1016/j.bspc.2022.104565" @default.
- W4313444291 hasPublicationYear "2023" @default.
- W4313444291 type Work @default.
- W4313444291 citedByCount "4" @default.
- W4313444291 countsByYear W43134442912023 @default.
- W4313444291 crossrefType "journal-article" @default.
- W4313444291 hasAuthorship W4313444291A5003777802 @default.
- W4313444291 hasAuthorship W4313444291A5010512539 @default.
- W4313444291 hasAuthorship W4313444291A5046147392 @default.
- W4313444291 hasAuthorship W4313444291A5068017913 @default.
- W4313444291 hasAuthorship W4313444291A5074942094 @default.
- W4313444291 hasAuthorship W4313444291A5079004601 @default.
- W4313444291 hasAuthorship W4313444291A5086578270 @default.
- W4313444291 hasConcept C103278499 @default.
- W4313444291 hasConcept C115961682 @default.
- W4313444291 hasConcept C153180895 @default.
- W4313444291 hasConcept C154945302 @default.
- W4313444291 hasConcept C2776502983 @default.
- W4313444291 hasConcept C31972630 @default.
- W4313444291 hasConcept C41008148 @default.
- W4313444291 hasConcept C89600930 @default.
- W4313444291 hasConceptScore W4313444291C103278499 @default.
- W4313444291 hasConceptScore W4313444291C115961682 @default.
- W4313444291 hasConceptScore W4313444291C153180895 @default.
- W4313444291 hasConceptScore W4313444291C154945302 @default.
- W4313444291 hasConceptScore W4313444291C2776502983 @default.
- W4313444291 hasConceptScore W4313444291C31972630 @default.
- W4313444291 hasConceptScore W4313444291C41008148 @default.
- W4313444291 hasConceptScore W4313444291C89600930 @default.
- W4313444291 hasFunder F4320321001 @default.
- W4313444291 hasFunder F4320323086 @default.
- W4313444291 hasFunder F4320328119 @default.
- W4313444291 hasFunder F4320335787 @default.
- W4313444291 hasLocation W43134442911 @default.
- W4313444291 hasOpenAccess W4313444291 @default.
- W4313444291 hasPrimaryLocation W43134442911 @default.
- W4313444291 hasRelatedWork W2004323682 @default.
- W4313444291 hasRelatedWork W2060895226 @default.
- W4313444291 hasRelatedWork W2069592018 @default.
- W4313444291 hasRelatedWork W2075740387 @default.
- W4313444291 hasRelatedWork W2329812990 @default.
- W4313444291 hasRelatedWork W2349116365 @default.
- W4313444291 hasRelatedWork W2358990940 @default.
- W4313444291 hasRelatedWork W2998542275 @default.
- W4313444291 hasRelatedWork W3021708704 @default.
- W4313444291 hasRelatedWork W2004231473 @default.
- W4313444291 hasVolume "82" @default.
- W4313444291 isParatext "false" @default.
- W4313444291 isRetracted "false" @default.
- W4313444291 workType "article" @default.