Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313444321> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4313444321 endingPage "67" @default.
- W4313444321 startingPage "59" @default.
- W4313444321 abstract "The speedy and reliable classification of plant disease/pest is essential to preventing productivity loss and loss or diminished quantity of agricultural commodities. Machine learning methodology can be used to obtain the solution. Deep learning has achieved significant advancement in the development of image processing in modern years, greatly outperforming previous approaches. Researchers are very interested in understanding how to apply deep learning to swot plant and pests detection. Deep learning, which is extremely popular in image processing, has offered many innovative precision farming applications in recent decades. In this investigation, deep learning models are adapted to the task at hand using transfer learning and deep feature extraction approaches. The given work takes into account the used pre-trained deep models for feature extraction and fine-tuning RCNN (Region with Convolution Neural Network) and YOLO (You Only Look Once) are used to classify the features extracted by deep feature extraction. Improvised YOLO is used which has proven pest prediction of about 95%. The performance of current research is compared, and common datasets are introduced. This paper examines potential obstacles in real-world applications of deep learning-based plant disease and pest detection. Data from genuine infection and pest pictures is used in the investigations. For performance evaluation, the accuracy is computed and compared." @default.
- W4313444321 created "2023-01-06" @default.
- W4313444321 creator A5007139760 @default.
- W4313444321 creator A5087372020 @default.
- W4313444321 creator A5088888087 @default.
- W4313444321 date "2023-01-01" @default.
- W4313444321 modified "2023-10-16" @default.
- W4313444321 title "Pest Detection Using Improvised YOLO Architecture" @default.
- W4313444321 cites W1851671608 @default.
- W4313444321 cites W2067361549 @default.
- W4313444321 cites W2116116559 @default.
- W4313444321 cites W2169768163 @default.
- W4313444321 cites W2488196994 @default.
- W4313444321 cites W2598645336 @default.
- W4313444321 cites W2753375532 @default.
- W4313444321 cites W2791568081 @default.
- W4313444321 cites W2902114955 @default.
- W4313444321 cites W2922275516 @default.
- W4313444321 cites W2938719104 @default.
- W4313444321 cites W2941119526 @default.
- W4313444321 cites W2943643909 @default.
- W4313444321 cites W3001553836 @default.
- W4313444321 cites W3013480166 @default.
- W4313444321 cites W3017284158 @default.
- W4313444321 cites W3115612815 @default.
- W4313444321 doi "https://doi.org/10.1007/978-981-19-7169-3_6" @default.
- W4313444321 hasPublicationYear "2023" @default.
- W4313444321 type Work @default.
- W4313444321 citedByCount "0" @default.
- W4313444321 crossrefType "book-chapter" @default.
- W4313444321 hasAuthorship W4313444321A5007139760 @default.
- W4313444321 hasAuthorship W4313444321A5087372020 @default.
- W4313444321 hasAuthorship W4313444321A5088888087 @default.
- W4313444321 hasConcept C108583219 @default.
- W4313444321 hasConcept C119857082 @default.
- W4313444321 hasConcept C127413603 @default.
- W4313444321 hasConcept C138885662 @default.
- W4313444321 hasConcept C144133560 @default.
- W4313444321 hasConcept C150899416 @default.
- W4313444321 hasConcept C153180895 @default.
- W4313444321 hasConcept C154945302 @default.
- W4313444321 hasConcept C162853370 @default.
- W4313444321 hasConcept C201995342 @default.
- W4313444321 hasConcept C22508944 @default.
- W4313444321 hasConcept C2776401178 @default.
- W4313444321 hasConcept C2780451532 @default.
- W4313444321 hasConcept C41008148 @default.
- W4313444321 hasConcept C41895202 @default.
- W4313444321 hasConcept C52622490 @default.
- W4313444321 hasConcept C81363708 @default.
- W4313444321 hasConceptScore W4313444321C108583219 @default.
- W4313444321 hasConceptScore W4313444321C119857082 @default.
- W4313444321 hasConceptScore W4313444321C127413603 @default.
- W4313444321 hasConceptScore W4313444321C138885662 @default.
- W4313444321 hasConceptScore W4313444321C144133560 @default.
- W4313444321 hasConceptScore W4313444321C150899416 @default.
- W4313444321 hasConceptScore W4313444321C153180895 @default.
- W4313444321 hasConceptScore W4313444321C154945302 @default.
- W4313444321 hasConceptScore W4313444321C162853370 @default.
- W4313444321 hasConceptScore W4313444321C201995342 @default.
- W4313444321 hasConceptScore W4313444321C22508944 @default.
- W4313444321 hasConceptScore W4313444321C2776401178 @default.
- W4313444321 hasConceptScore W4313444321C2780451532 @default.
- W4313444321 hasConceptScore W4313444321C41008148 @default.
- W4313444321 hasConceptScore W4313444321C41895202 @default.
- W4313444321 hasConceptScore W4313444321C52622490 @default.
- W4313444321 hasConceptScore W4313444321C81363708 @default.
- W4313444321 hasLocation W43134443211 @default.
- W4313444321 hasOpenAccess W4313444321 @default.
- W4313444321 hasPrimaryLocation W43134443211 @default.
- W4313444321 hasRelatedWork W2279398222 @default.
- W4313444321 hasRelatedWork W2946016983 @default.
- W4313444321 hasRelatedWork W3018421652 @default.
- W4313444321 hasRelatedWork W3021430260 @default.
- W4313444321 hasRelatedWork W3091976719 @default.
- W4313444321 hasRelatedWork W3192840557 @default.
- W4313444321 hasRelatedWork W4220996320 @default.
- W4313444321 hasRelatedWork W4285149559 @default.
- W4313444321 hasRelatedWork W4299822940 @default.
- W4313444321 hasRelatedWork W4312200629 @default.
- W4313444321 isParatext "false" @default.
- W4313444321 isRetracted "false" @default.
- W4313444321 workType "book-chapter" @default.