Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313444346> ?p ?o ?g. }
- W4313444346 endingPage "278" @default.
- W4313444346 startingPage "245" @default.
- W4313444346 abstract "Abstract Data-driven modeling of complex dynamical systems is becoming increasingly popular across various domains of science and engineering. This is thanks to advances in numerical computing, which provides high fidelity data, and to algorithm development in data science and machine learning. Simulations of multicomponent reacting flows can particularly profit from data-based reduced-order modeling (ROM). The original system of coupled partial differential equations that describes a reacting flow is often large due to high number of chemical species involved. While the datasets from reacting flow simulation have high state-space dimensionality, they also exhibit attracting low-dimensional manifolds (LDMs). Data-driven approaches can be used to obtain and parameterize these LDMs. Evolving the reacting system using a smaller number of parameters can yield substantial model reduction and savings in computational cost. In this chapter, we review recent advances in ROM of turbulent reacting flows. We demonstrate the entire ROM workflow with a particular focus on obtaining the training datasets and data science and machine learning techniques such as dimensionality reduction and nonlinear regression. We present recent results from ROM-based simulations of experimentally measured Sandia flames D and F. We also delineate a few remaining challenges and possible future directions to address them. This chapter is accompanied by illustrative examples using the recently developed Python software, PCAfold . The software can be used to obtain, analyze and improve low-dimensional data representations. The examples provided herein can be helpful to students and researchers learning to apply dimensionality reduction, manifold approaches and nonlinear regression to their problems. The Jupyter notebook with the examples shown in this chapter can be found on GitHub at https://github.com/kamilazdybal/ROM-of-reacting-flows- Springer ." @default.
- W4313444346 created "2023-01-06" @default.
- W4313444346 creator A5018932973 @default.
- W4313444346 creator A5031008443 @default.
- W4313444346 creator A5053134083 @default.
- W4313444346 creator A5076016401 @default.
- W4313444346 creator A5085238340 @default.
- W4313444346 date "2023-01-01" @default.
- W4313444346 modified "2023-09-26" @default.
- W4313444346 title "Reduced-Order Modeling of Reacting Flows Using Data-Driven Approaches" @default.
- W4313444346 cites W1175512734 @default.
- W4313444346 cites W158364874 @default.
- W4313444346 cites W1974700058 @default.
- W4313444346 cites W1976336142 @default.
- W4313444346 cites W1982124500 @default.
- W4313444346 cites W1988969170 @default.
- W4313444346 cites W1989464538 @default.
- W4313444346 cites W1995618157 @default.
- W4313444346 cites W1997557789 @default.
- W4313444346 cites W1997757439 @default.
- W4313444346 cites W2004026774 @default.
- W4313444346 cites W2006290656 @default.
- W4313444346 cites W2006602203 @default.
- W4313444346 cites W2007718395 @default.
- W4313444346 cites W2009327160 @default.
- W4313444346 cites W2012709879 @default.
- W4313444346 cites W2024163331 @default.
- W4313444346 cites W2033749227 @default.
- W4313444346 cites W2043022854 @default.
- W4313444346 cites W2044930913 @default.
- W4313444346 cites W2045439892 @default.
- W4313444346 cites W2046100676 @default.
- W4313444346 cites W2060182705 @default.
- W4313444346 cites W2060516855 @default.
- W4313444346 cites W2075680387 @default.
- W4313444346 cites W2076658351 @default.
- W4313444346 cites W2076661340 @default.
- W4313444346 cites W2077408387 @default.
- W4313444346 cites W2078218794 @default.
- W4313444346 cites W2092602761 @default.
- W4313444346 cites W2108889504 @default.
- W4313444346 cites W2116088054 @default.
- W4313444346 cites W2121121711 @default.
- W4313444346 cites W2137983211 @default.
- W4313444346 cites W2141906015 @default.
- W4313444346 cites W2145377825 @default.
- W4313444346 cites W2147660374 @default.
- W4313444346 cites W2290473087 @default.
- W4313444346 cites W2345707345 @default.
- W4313444346 cites W2392295588 @default.
- W4313444346 cites W2728051190 @default.
- W4313444346 cites W2757549526 @default.
- W4313444346 cites W2765302427 @default.
- W4313444346 cites W2777417212 @default.
- W4313444346 cites W2791870278 @default.
- W4313444346 cites W2801519099 @default.
- W4313444346 cites W2899283552 @default.
- W4313444346 cites W2951888346 @default.
- W4313444346 cites W2963448313 @default.
- W4313444346 cites W2963754333 @default.
- W4313444346 cites W3082364441 @default.
- W4313444346 cites W3082455610 @default.
- W4313444346 cites W3082575371 @default.
- W4313444346 cites W3099495459 @default.
- W4313444346 cites W3107758309 @default.
- W4313444346 cites W3119404186 @default.
- W4313444346 cites W3167021679 @default.
- W4313444346 cites W3177152315 @default.
- W4313444346 cites W3199541827 @default.
- W4313444346 cites W3209388676 @default.
- W4313444346 cites W3211316682 @default.
- W4313444346 cites W3213739478 @default.
- W4313444346 cites W4206419526 @default.
- W4313444346 cites W4211049957 @default.
- W4313444346 cites W4238160257 @default.
- W4313444346 cites W4238727159 @default.
- W4313444346 cites W4281946597 @default.
- W4313444346 cites W4285585432 @default.
- W4313444346 cites W4292329038 @default.
- W4313444346 cites W4293037624 @default.
- W4313444346 cites W4294366813 @default.
- W4313444346 cites W4296466148 @default.
- W4313444346 cites W4315607185 @default.
- W4313444346 doi "https://doi.org/10.1007/978-3-031-16248-0_9" @default.
- W4313444346 hasPublicationYear "2023" @default.
- W4313444346 type Work @default.
- W4313444346 citedByCount "0" @default.
- W4313444346 crossrefType "book-chapter" @default.
- W4313444346 hasAuthorship W4313444346A5018932973 @default.
- W4313444346 hasAuthorship W4313444346A5031008443 @default.
- W4313444346 hasAuthorship W4313444346A5053134083 @default.
- W4313444346 hasAuthorship W4313444346A5076016401 @default.
- W4313444346 hasAuthorship W4313444346A5085238340 @default.
- W4313444346 hasBestOaLocation W43134443461 @default.
- W4313444346 hasConcept C111030470 @default.
- W4313444346 hasConcept C11413529 @default.
- W4313444346 hasConcept C119857082 @default.
- W4313444346 hasConcept C121332964 @default.