Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313444370> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4313444370 endingPage "104491" @default.
- W4313444370 startingPage "104491" @default.
- W4313444370 abstract "High-resolution Magnetic Resonance Imaging (MRI) allows the visualization of the anatomy of different skin layers and provides a wide range of physical and biochemical parameters. This technique is very effective for the study of skin hydration, through a multitude of morphological, physical and chemical properties. In this paper, we leverage the recent success achieved by deep learning architecture in several medical applications. We propose a method that segments the first layers of the skin, in order to study the hydration effect on each layer based on T2 measurements. Despite the small number of subjects studied, we were able to build a convolutional neural network (CNN) on labeled learning data and generate the T2 map to explore the effect of moisturization. Besides, CNN architecture was applied to map between the exams before and after moisturization allowing simulation of the skin hydration phenomenon. Our study proved the strong correlation between the manual measurement based on T2 mapping generation and the CNN-based measurement. The mean of the Dice index between the manual and automatic methods was 0.79 CI:[0.66-0.88] before moisturization, and 0.75 CI:[0.61-0.89] after moisturization. And the Hausdorff distance was (0.134 mm) before moisturization, and (0.226 mm) after moisturization. In our experiment, Unet was used effectively to segment skin layers, which achieved a high accuracy training score (Accuracy=0.9, Loss=0.01). For regression, an CNN model was used to simulate the skin hydration (Dice = 0.961). The Unet model used to study the hydration effect of the skin layers in 3T MRI was reliable to insure the excellent T2 measurement values according to the manual measurement and gave an ideal segmented skin layers compared to the skin anatomy. Besides, we demonstrated that CNN architecture allows simulating skin hydration." @default.
- W4313444370 created "2023-01-06" @default.
- W4313444370 creator A5005301407 @default.
- W4313444370 creator A5029826205 @default.
- W4313444370 creator A5033516088 @default.
- W4313444370 creator A5075468902 @default.
- W4313444370 date "2023-03-01" @default.
- W4313444370 modified "2023-10-11" @default.
- W4313444370 title "Convolutional neural networks-based method for skin hydration measurements in high resolution MRI" @default.
- W4313444370 cites W1899163698 @default.
- W4313444370 cites W1901129140 @default.
- W4313444370 cites W1932276507 @default.
- W4313444370 cites W2006175195 @default.
- W4313444370 cites W2010649283 @default.
- W4313444370 cites W2021621463 @default.
- W4313444370 cites W2022913536 @default.
- W4313444370 cites W2034950600 @default.
- W4313444370 cites W2042824450 @default.
- W4313444370 cites W2046739280 @default.
- W4313444370 cites W2059554707 @default.
- W4313444370 cites W2089908828 @default.
- W4313444370 cites W2093318732 @default.
- W4313444370 cites W2106981272 @default.
- W4313444370 cites W2138810422 @default.
- W4313444370 cites W2395896145 @default.
- W4313444370 cites W2543639660 @default.
- W4313444370 cites W2609625738 @default.
- W4313444370 cites W2674824053 @default.
- W4313444370 cites W2751058759 @default.
- W4313444370 cites W2753588101 @default.
- W4313444370 cites W2753863096 @default.
- W4313444370 cites W2773710444 @default.
- W4313444370 cites W2887295470 @default.
- W4313444370 cites W2896013345 @default.
- W4313444370 cites W2903033372 @default.
- W4313444370 cites W2910837874 @default.
- W4313444370 cites W2954166083 @default.
- W4313444370 cites W2961217518 @default.
- W4313444370 cites W2979783984 @default.
- W4313444370 cites W2995247280 @default.
- W4313444370 cites W4225014150 @default.
- W4313444370 cites W4229695330 @default.
- W4313444370 doi "https://doi.org/10.1016/j.bspc.2022.104491" @default.
- W4313444370 hasPublicationYear "2023" @default.
- W4313444370 type Work @default.
- W4313444370 citedByCount "3" @default.
- W4313444370 countsByYear W43134443702023 @default.
- W4313444370 crossrefType "journal-article" @default.
- W4313444370 hasAuthorship W4313444370A5005301407 @default.
- W4313444370 hasAuthorship W4313444370A5029826205 @default.
- W4313444370 hasAuthorship W4313444370A5033516088 @default.
- W4313444370 hasAuthorship W4313444370A5075468902 @default.
- W4313444370 hasConcept C108583219 @default.
- W4313444370 hasConcept C141898687 @default.
- W4313444370 hasConcept C153083717 @default.
- W4313444370 hasConcept C153180895 @default.
- W4313444370 hasConcept C154945302 @default.
- W4313444370 hasConcept C36464697 @default.
- W4313444370 hasConcept C41008148 @default.
- W4313444370 hasConcept C81363708 @default.
- W4313444370 hasConceptScore W4313444370C108583219 @default.
- W4313444370 hasConceptScore W4313444370C141898687 @default.
- W4313444370 hasConceptScore W4313444370C153083717 @default.
- W4313444370 hasConceptScore W4313444370C153180895 @default.
- W4313444370 hasConceptScore W4313444370C154945302 @default.
- W4313444370 hasConceptScore W4313444370C36464697 @default.
- W4313444370 hasConceptScore W4313444370C41008148 @default.
- W4313444370 hasConceptScore W4313444370C81363708 @default.
- W4313444370 hasLocation W43134443701 @default.
- W4313444370 hasOpenAccess W4313444370 @default.
- W4313444370 hasPrimaryLocation W43134443701 @default.
- W4313444370 hasRelatedWork W2068608913 @default.
- W4313444370 hasRelatedWork W2136359393 @default.
- W4313444370 hasRelatedWork W3029198973 @default.
- W4313444370 hasRelatedWork W3125779006 @default.
- W4313444370 hasRelatedWork W3133861977 @default.
- W4313444370 hasRelatedWork W3167935049 @default.
- W4313444370 hasRelatedWork W3193565141 @default.
- W4313444370 hasRelatedWork W4226493464 @default.
- W4313444370 hasRelatedWork W4312417841 @default.
- W4313444370 hasRelatedWork W4383558898 @default.
- W4313444370 hasVolume "81" @default.
- W4313444370 isParatext "false" @default.
- W4313444370 isRetracted "false" @default.
- W4313444370 workType "article" @default.