Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313444407> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4313444407 endingPage "100" @default.
- W4313444407 startingPage "89" @default.
- W4313444407 abstract "In the field of text classification, news text classification has always been the focus of research, and it is quite difficult. With the gradual maturity of deep learning technology and the advent of the information explosion era, the traditional text classification method has been unable to meet people's needs for rapid, efficient, and accurate news classification. The neural network based on bidirectional encoder representations from transformers (BERT) in deep learning is very suitable for news text classification. However, the random mask masking method adopted by BERT model does not incorporate the knowledge information of Chinese language, resulting in the problem of low classification accuracy. Based on this problem, this paper proposes a news topic classification method based on the ERNIE model of multi-stage fusion knowledge masking strategy. When the Chinese language knowledge information fusion model deals with the Chinese news text classification problem, the BERT model, BERT-CNN model, and ConvBERT model are compared. The results show that ERNIE model is superior to other models in the task of news text classification." @default.
- W4313444407 created "2023-01-06" @default.
- W4313444407 creator A5080217808 @default.
- W4313444407 date "2023-01-01" @default.
- W4313444407 modified "2023-09-26" @default.
- W4313444407 title "Research on Chinese News Text Classification Based on ERNIE Model" @default.
- W4313444407 cites W2077563243 @default.
- W4313444407 cites W2112796928 @default.
- W4313444407 cites W2130284530 @default.
- W4313444407 cites W2618694545 @default.
- W4313444407 cites W2963874170 @default.
- W4313444407 cites W3011411500 @default.
- W4313444407 doi "https://doi.org/10.1007/978-981-19-7184-6_8" @default.
- W4313444407 hasPublicationYear "2023" @default.
- W4313444407 type Work @default.
- W4313444407 citedByCount "1" @default.
- W4313444407 countsByYear W43134444072023 @default.
- W4313444407 crossrefType "book-chapter" @default.
- W4313444407 hasAuthorship W4313444407A5080217808 @default.
- W4313444407 hasConcept C108583219 @default.
- W4313444407 hasConcept C111919701 @default.
- W4313444407 hasConcept C118505674 @default.
- W4313444407 hasConcept C120665830 @default.
- W4313444407 hasConcept C121332964 @default.
- W4313444407 hasConcept C137293760 @default.
- W4313444407 hasConcept C152565575 @default.
- W4313444407 hasConcept C154945302 @default.
- W4313444407 hasConcept C192209626 @default.
- W4313444407 hasConcept C202444582 @default.
- W4313444407 hasConcept C204321447 @default.
- W4313444407 hasConcept C23123220 @default.
- W4313444407 hasConcept C33923547 @default.
- W4313444407 hasConcept C41008148 @default.
- W4313444407 hasConcept C9652623 @default.
- W4313444407 hasConceptScore W4313444407C108583219 @default.
- W4313444407 hasConceptScore W4313444407C111919701 @default.
- W4313444407 hasConceptScore W4313444407C118505674 @default.
- W4313444407 hasConceptScore W4313444407C120665830 @default.
- W4313444407 hasConceptScore W4313444407C121332964 @default.
- W4313444407 hasConceptScore W4313444407C137293760 @default.
- W4313444407 hasConceptScore W4313444407C152565575 @default.
- W4313444407 hasConceptScore W4313444407C154945302 @default.
- W4313444407 hasConceptScore W4313444407C192209626 @default.
- W4313444407 hasConceptScore W4313444407C202444582 @default.
- W4313444407 hasConceptScore W4313444407C204321447 @default.
- W4313444407 hasConceptScore W4313444407C23123220 @default.
- W4313444407 hasConceptScore W4313444407C33923547 @default.
- W4313444407 hasConceptScore W4313444407C41008148 @default.
- W4313444407 hasConceptScore W4313444407C9652623 @default.
- W4313444407 hasLocation W43134444071 @default.
- W4313444407 hasOpenAccess W4313444407 @default.
- W4313444407 hasPrimaryLocation W43134444071 @default.
- W4313444407 hasRelatedWork W1803059841 @default.
- W4313444407 hasRelatedWork W2001214180 @default.
- W4313444407 hasRelatedWork W2107524433 @default.
- W4313444407 hasRelatedWork W2359001871 @default.
- W4313444407 hasRelatedWork W2547835662 @default.
- W4313444407 hasRelatedWork W2773616286 @default.
- W4313444407 hasRelatedWork W2787045460 @default.
- W4313444407 hasRelatedWork W3080906831 @default.
- W4313444407 hasRelatedWork W3089044186 @default.
- W4313444407 hasRelatedWork W4312831135 @default.
- W4313444407 isParatext "false" @default.
- W4313444407 isRetracted "false" @default.
- W4313444407 workType "book-chapter" @default.