Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313444632> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4313444632 endingPage "212" @default.
- W4313444632 startingPage "195" @default.
- W4313444632 abstract "Electroencephalogram (EEG) signals from the brain provide additional information about emotional states that we may be unable to convey verbally. Machine learning algorithms can effectively predict the emotion from brain waves. So, we design a research to evaluate the effectiveness of multiple machine learning techniques - Naive Bayes, Logistic Regression, XGBoost, SVM, Decision Tree, Random Forest, KNN, and deep learning models—CNN, LSTM, and Bi-LSTM for classifying sentiment from brain signals. In our experiment, the DEAP dataset is used as a collection of brain signals representing different human sentiments. The Fast Fourier transformation (FFT) which shifts the data to the frequency domain is used to extract features from the time series EEG data. Among all the algorithms CNN, KNN and Random Forest achieved the highest accuracy of 96.64%, 95.8%, and 95.28% respectively on the binary classification of valence. The results demonstrate that it is possible to attain accuracy comparable to or even outperform some of the deep learning models by combining appropriate feature extraction techniques (in this case FFT) with machine learning algorithms." @default.
- W4313444632 created "2023-01-06" @default.
- W4313444632 creator A5015314974 @default.
- W4313444632 creator A5023157523 @default.
- W4313444632 creator A5044032604 @default.
- W4313444632 creator A5046944985 @default.
- W4313444632 creator A5076451838 @default.
- W4313444632 date "2023-01-01" @default.
- W4313444632 modified "2023-10-16" @default.
- W4313444632 title "Evaluating the Effectiveness of Classification Algorithms for EEG Sentiment Analysis" @default.
- W4313444632 cites W2002055708 @default.
- W4313444632 cites W2081420711 @default.
- W4313444632 cites W2155632266 @default.
- W4313444632 cites W2255466643 @default.
- W4313444632 cites W2342603028 @default.
- W4313444632 cites W2599124244 @default.
- W4313444632 cites W2604808181 @default.
- W4313444632 cites W2731964405 @default.
- W4313444632 cites W2889105179 @default.
- W4313444632 cites W2960600329 @default.
- W4313444632 cites W2962905870 @default.
- W4313444632 cites W2991465589 @default.
- W4313444632 cites W2997560618 @default.
- W4313444632 cites W2998500327 @default.
- W4313444632 cites W3009120439 @default.
- W4313444632 cites W3012311943 @default.
- W4313444632 cites W3089148108 @default.
- W4313444632 cites W3102822077 @default.
- W4313444632 cites W3108087271 @default.
- W4313444632 cites W3108484628 @default.
- W4313444632 cites W3169874873 @default.
- W4313444632 cites W3181731900 @default.
- W4313444632 cites W3194330910 @default.
- W4313444632 cites W3205803445 @default.
- W4313444632 cites W3210145349 @default.
- W4313444632 cites W4213199906 @default.
- W4313444632 cites W4256049924 @default.
- W4313444632 doi "https://doi.org/10.1007/978-981-19-5443-6_17" @default.
- W4313444632 hasPublicationYear "2023" @default.
- W4313444632 type Work @default.
- W4313444632 citedByCount "0" @default.
- W4313444632 crossrefType "book-chapter" @default.
- W4313444632 hasAuthorship W4313444632A5015314974 @default.
- W4313444632 hasAuthorship W4313444632A5023157523 @default.
- W4313444632 hasAuthorship W4313444632A5044032604 @default.
- W4313444632 hasAuthorship W4313444632A5046944985 @default.
- W4313444632 hasAuthorship W4313444632A5076451838 @default.
- W4313444632 hasConcept C11413529 @default.
- W4313444632 hasConcept C118552586 @default.
- W4313444632 hasConcept C119857082 @default.
- W4313444632 hasConcept C12267149 @default.
- W4313444632 hasConcept C153180895 @default.
- W4313444632 hasConcept C154945302 @default.
- W4313444632 hasConcept C15744967 @default.
- W4313444632 hasConcept C169258074 @default.
- W4313444632 hasConcept C41008148 @default.
- W4313444632 hasConcept C52001869 @default.
- W4313444632 hasConcept C522805319 @default.
- W4313444632 hasConcept C52622490 @default.
- W4313444632 hasConcept C66402592 @default.
- W4313444632 hasConcept C75172450 @default.
- W4313444632 hasConcept C84525736 @default.
- W4313444632 hasConceptScore W4313444632C11413529 @default.
- W4313444632 hasConceptScore W4313444632C118552586 @default.
- W4313444632 hasConceptScore W4313444632C119857082 @default.
- W4313444632 hasConceptScore W4313444632C12267149 @default.
- W4313444632 hasConceptScore W4313444632C153180895 @default.
- W4313444632 hasConceptScore W4313444632C154945302 @default.
- W4313444632 hasConceptScore W4313444632C15744967 @default.
- W4313444632 hasConceptScore W4313444632C169258074 @default.
- W4313444632 hasConceptScore W4313444632C41008148 @default.
- W4313444632 hasConceptScore W4313444632C52001869 @default.
- W4313444632 hasConceptScore W4313444632C522805319 @default.
- W4313444632 hasConceptScore W4313444632C52622490 @default.
- W4313444632 hasConceptScore W4313444632C66402592 @default.
- W4313444632 hasConceptScore W4313444632C75172450 @default.
- W4313444632 hasConceptScore W4313444632C84525736 @default.
- W4313444632 hasLocation W43134446321 @default.
- W4313444632 hasOpenAccess W4313444632 @default.
- W4313444632 hasPrimaryLocation W43134446321 @default.
- W4313444632 hasRelatedWork W2985924212 @default.
- W4313444632 hasRelatedWork W3204641204 @default.
- W4313444632 hasRelatedWork W4285407528 @default.
- W4313444632 hasRelatedWork W4289812785 @default.
- W4313444632 hasRelatedWork W4313070894 @default.
- W4313444632 hasRelatedWork W4321512735 @default.
- W4313444632 hasRelatedWork W4321636153 @default.
- W4313444632 hasRelatedWork W4377964522 @default.
- W4313444632 hasRelatedWork W4383746529 @default.
- W4313444632 hasRelatedWork W4384345534 @default.
- W4313444632 isParatext "false" @default.
- W4313444632 isRetracted "false" @default.
- W4313444632 workType "book-chapter" @default.