Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313444679> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4313444679 endingPage "150" @default.
- W4313444679 startingPage "133" @default.
- W4313444679 abstract "Emotion is a complicated state that influences one's thoughts and behaviour. Recognizing the emotions of a human being is a major research interest in the affective computing after this pandemic situation and which can be applied in medical related fields to cure physical and mental illness. Early detection of stress helps humans to avoid or prevent many diseases related to it. The development of an emotion recognition system using machine learning algorithms has taken a lot of time and effort for researchers and is less focused with Electroencephalography (EEG) signals because EEG signals are noisy, non-linear, and non-stationary. Deep learning algorithms are the most popular solution due to its ability to see images as data. In this paper, we propose a deep learning framework, Gated Recurrent Unit Emotion Recognizer (GRUER) that can detect human emotion with help of EEG signals. This is achieved by implementing four feature extraction algorithms such as Short-Time Fourier Transform (STFT), Wavelet Entropy, Hjorth and Statistical features on dataset and the feature selection method Principal Component Analysis (PCA) is applied to the extracted features to select most significant features to obtain high-accuracy emotion recognizing model. Keras libraries are used to train the model in an appropriate way so that it is neither overfit nor underfit with the data using the Early-stopping function. The performance of the GRUER model is measured using performance metrics such as accuracy, precision, recall and F1-Score are illustrated in the results. The accuracy of the GRUER is 98% and it is a 3-dimensional model which has valence, arousal and dominance for emotion detection. The model loss obtained by GRUER is 1.12 which is low when compared to other models. Finally, the suggested method and its results show that this proposed method outperforms numerous existing emotion recognition systems." @default.
- W4313444679 created "2023-01-06" @default.
- W4313444679 creator A5028127854 @default.
- W4313444679 creator A5034411590 @default.
- W4313444679 date "2023-01-01" @default.
- W4313444679 modified "2023-09-23" @default.
- W4313444679 title "Implementation of an Automatic EEG Feature Extraction with Gated Recurrent Neural Network for Emotion Recognition" @default.
- W4313444679 cites W2769135762 @default.
- W4313444679 cites W2895937007 @default.
- W4313444679 cites W2899800683 @default.
- W4313444679 cites W2952286992 @default.
- W4313444679 cites W2963355311 @default.
- W4313444679 cites W2980095030 @default.
- W4313444679 cites W2988016651 @default.
- W4313444679 cites W3025334394 @default.
- W4313444679 cites W3027008785 @default.
- W4313444679 cites W3030870789 @default.
- W4313444679 cites W3033817461 @default.
- W4313444679 cites W3038474676 @default.
- W4313444679 cites W3044317125 @default.
- W4313444679 cites W3046236234 @default.
- W4313444679 cites W3091553737 @default.
- W4313444679 cites W3092404120 @default.
- W4313444679 cites W3104763483 @default.
- W4313444679 cites W3113280176 @default.
- W4313444679 cites W3130637596 @default.
- W4313444679 cites W3139032881 @default.
- W4313444679 cites W3148123290 @default.
- W4313444679 doi "https://doi.org/10.1007/978-981-19-7169-3_13" @default.
- W4313444679 hasPublicationYear "2023" @default.
- W4313444679 type Work @default.
- W4313444679 citedByCount "0" @default.
- W4313444679 crossrefType "book-chapter" @default.
- W4313444679 hasAuthorship W4313444679A5028127854 @default.
- W4313444679 hasAuthorship W4313444679A5034411590 @default.
- W4313444679 hasConcept C108583219 @default.
- W4313444679 hasConcept C118552586 @default.
- W4313444679 hasConcept C119857082 @default.
- W4313444679 hasConcept C148483581 @default.
- W4313444679 hasConcept C153180895 @default.
- W4313444679 hasConcept C154945302 @default.
- W4313444679 hasConcept C15744967 @default.
- W4313444679 hasConcept C206310091 @default.
- W4313444679 hasConcept C22019652 @default.
- W4313444679 hasConcept C28490314 @default.
- W4313444679 hasConcept C41008148 @default.
- W4313444679 hasConcept C50644808 @default.
- W4313444679 hasConcept C522805319 @default.
- W4313444679 hasConcept C52622490 @default.
- W4313444679 hasConceptScore W4313444679C108583219 @default.
- W4313444679 hasConceptScore W4313444679C118552586 @default.
- W4313444679 hasConceptScore W4313444679C119857082 @default.
- W4313444679 hasConceptScore W4313444679C148483581 @default.
- W4313444679 hasConceptScore W4313444679C153180895 @default.
- W4313444679 hasConceptScore W4313444679C154945302 @default.
- W4313444679 hasConceptScore W4313444679C15744967 @default.
- W4313444679 hasConceptScore W4313444679C206310091 @default.
- W4313444679 hasConceptScore W4313444679C22019652 @default.
- W4313444679 hasConceptScore W4313444679C28490314 @default.
- W4313444679 hasConceptScore W4313444679C41008148 @default.
- W4313444679 hasConceptScore W4313444679C50644808 @default.
- W4313444679 hasConceptScore W4313444679C522805319 @default.
- W4313444679 hasConceptScore W4313444679C52622490 @default.
- W4313444679 hasLocation W43134446791 @default.
- W4313444679 hasOpenAccess W4313444679 @default.
- W4313444679 hasPrimaryLocation W43134446791 @default.
- W4313444679 hasRelatedWork W2946016983 @default.
- W4313444679 hasRelatedWork W2989932438 @default.
- W4313444679 hasRelatedWork W3099765033 @default.
- W4313444679 hasRelatedWork W4223943233 @default.
- W4313444679 hasRelatedWork W4285802257 @default.
- W4313444679 hasRelatedWork W4312200629 @default.
- W4313444679 hasRelatedWork W4360585206 @default.
- W4313444679 hasRelatedWork W4361732492 @default.
- W4313444679 hasRelatedWork W4380075502 @default.
- W4313444679 hasRelatedWork W2345184372 @default.
- W4313444679 isParatext "false" @default.
- W4313444679 isRetracted "false" @default.
- W4313444679 workType "book-chapter" @default.