Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313444732> ?p ?o ?g. }
- W4313444732 endingPage "479" @default.
- W4313444732 startingPage "457" @default.
- W4313444732 abstract "Today, the world experiences a surge in adoption of renewable electricity generation methods. As a consequence to this, the dependence of electricity supply and demand has parallelly seen a dramatic increase on covariates like solar irradiance, wind speed, and temperature. Addressing the demand response scenario with efficient forecasting strategies is critical for the smart grid stability. With increment of renewable energy factor in total share of electricity generation, it becomes imperative to consider the external factors covariates while predicting the electricity price and load forecasting. Forecasting strategies, based on statistical and machine learning models, facilitates efficient and informed responses for electricity market. However, due to presence of large pool of forecasting models each having its own suitability, it becomes cumbersome to choose an appropriate sophisticated model selection from them. This work presents a methodological review of existing forecasting statistical and machine learning models and algorithms, with the prime purpose of choosing a best suited model for a specific environment or scenario. Data used for this purpose are a time series data, and information is very scattered in nature; thus, the process to make a full dataset and combining it with external covariates is a complex phenomenon. The work also discusses the process of making the multivariate time series dataset based on U.S. Energy Information Administration and combined it with typical meteorological year (TMY3) datasets. To validate the outcome of literature survey, detail experiment has been performed using the prepared dataset, and comparative analysis is presented." @default.
- W4313444732 created "2023-01-06" @default.
- W4313444732 creator A5004099006 @default.
- W4313444732 creator A5023975871 @default.
- W4313444732 creator A5061340818 @default.
- W4313444732 creator A5062668227 @default.
- W4313444732 creator A5082647086 @default.
- W4313444732 date "2023-01-01" @default.
- W4313444732 modified "2023-10-03" @default.
- W4313444732 title "A Methodological Review of Time Series Forecasting with Deep Learning Model: A Case Study on Electricity Load and Price Prediction" @default.
- W4313444732 cites W1990785420 @default.
- W4313444732 cites W2008725920 @default.
- W4313444732 cites W2021817214 @default.
- W4313444732 cites W2057509146 @default.
- W4313444732 cites W2071555926 @default.
- W4313444732 cites W2083328625 @default.
- W4313444732 cites W2089217930 @default.
- W4313444732 cites W2105624819 @default.
- W4313444732 cites W2136639813 @default.
- W4313444732 cites W2268377817 @default.
- W4313444732 cites W2312594268 @default.
- W4313444732 cites W2342107842 @default.
- W4313444732 cites W2342249984 @default.
- W4313444732 cites W2465887865 @default.
- W4313444732 cites W2485905548 @default.
- W4313444732 cites W2552464054 @default.
- W4313444732 cites W2560370080 @default.
- W4313444732 cites W2588494523 @default.
- W4313444732 cites W2591426394 @default.
- W4313444732 cites W2621900912 @default.
- W4313444732 cites W2650193915 @default.
- W4313444732 cites W2729222988 @default.
- W4313444732 cites W2789768939 @default.
- W4313444732 cites W2790486829 @default.
- W4313444732 cites W2794778778 @default.
- W4313444732 cites W2799827709 @default.
- W4313444732 cites W2800872569 @default.
- W4313444732 cites W2801761896 @default.
- W4313444732 cites W2802410020 @default.
- W4313444732 cites W2802491896 @default.
- W4313444732 cites W2802586787 @default.
- W4313444732 cites W2809317444 @default.
- W4313444732 cites W2896455190 @default.
- W4313444732 cites W2912812282 @default.
- W4313444732 cites W2970153684 @default.
- W4313444732 cites W3049001476 @default.
- W4313444732 cites W3087213302 @default.
- W4313444732 cites W3114969739 @default.
- W4313444732 cites W3124621140 @default.
- W4313444732 cites W3125505924 @default.
- W4313444732 cites W4243024427 @default.
- W4313444732 cites W977807926 @default.
- W4313444732 doi "https://doi.org/10.1007/978-981-19-5868-7_34" @default.
- W4313444732 hasPublicationYear "2023" @default.
- W4313444732 type Work @default.
- W4313444732 citedByCount "1" @default.
- W4313444732 countsByYear W43134447322023 @default.
- W4313444732 crossrefType "book-chapter" @default.
- W4313444732 hasAuthorship W4313444732A5004099006 @default.
- W4313444732 hasAuthorship W4313444732A5023975871 @default.
- W4313444732 hasAuthorship W4313444732A5061340818 @default.
- W4313444732 hasAuthorship W4313444732A5062668227 @default.
- W4313444732 hasAuthorship W4313444732A5082647086 @default.
- W4313444732 hasConcept C10558101 @default.
- W4313444732 hasConcept C111919701 @default.
- W4313444732 hasConcept C119043178 @default.
- W4313444732 hasConcept C119599485 @default.
- W4313444732 hasConcept C119857082 @default.
- W4313444732 hasConcept C122282355 @default.
- W4313444732 hasConcept C127413603 @default.
- W4313444732 hasConcept C146733006 @default.
- W4313444732 hasConcept C149782125 @default.
- W4313444732 hasConcept C151406439 @default.
- W4313444732 hasConcept C154945302 @default.
- W4313444732 hasConcept C162324750 @default.
- W4313444732 hasConcept C188573790 @default.
- W4313444732 hasConcept C206658404 @default.
- W4313444732 hasConcept C2781104810 @default.
- W4313444732 hasConcept C41008148 @default.
- W4313444732 hasConcept C49937458 @default.
- W4313444732 hasConcept C98045186 @default.
- W4313444732 hasConceptScore W4313444732C10558101 @default.
- W4313444732 hasConceptScore W4313444732C111919701 @default.
- W4313444732 hasConceptScore W4313444732C119043178 @default.
- W4313444732 hasConceptScore W4313444732C119599485 @default.
- W4313444732 hasConceptScore W4313444732C119857082 @default.
- W4313444732 hasConceptScore W4313444732C122282355 @default.
- W4313444732 hasConceptScore W4313444732C127413603 @default.
- W4313444732 hasConceptScore W4313444732C146733006 @default.
- W4313444732 hasConceptScore W4313444732C149782125 @default.
- W4313444732 hasConceptScore W4313444732C151406439 @default.
- W4313444732 hasConceptScore W4313444732C154945302 @default.
- W4313444732 hasConceptScore W4313444732C162324750 @default.
- W4313444732 hasConceptScore W4313444732C188573790 @default.
- W4313444732 hasConceptScore W4313444732C206658404 @default.
- W4313444732 hasConceptScore W4313444732C2781104810 @default.
- W4313444732 hasConceptScore W4313444732C41008148 @default.
- W4313444732 hasConceptScore W4313444732C49937458 @default.