Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313444819> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4313444819 endingPage "424" @default.
- W4313444819 startingPage "411" @default.
- W4313444819 abstract "In the Internet of Things (IoT) technology, there are several issues to overcome, including network security. New attacks have been developed to target vulnerabilities in IoT devices, and the Internet of Things on a huge scale will exacerbate present network threats. Machine learning is becoming increasingly used in applications such as traffic classification and intrusion detection. This paper offers a technique for detecting network fault severity and identifying Internet of Things (IoT) devices based on several attributes. By pushing information to the network area, the proposed framework captures different features from each network flow in order to identify the source of traffic and the type of traffic generated is used to detect different network attacks. Different machine learning algorithms are tested to find the better suited algorithm that deliver best results. The following are some of the examples: Random Forest (RF) algorithm, decision tree, SVM, etc. After completing the experimentation, it was found that the random forest classifier and decision tree are the best performing ML algorithms to classify the network severity with an accuracy of about 96.98% and GNB is found as the least performing machine learning model with an accuracy of about 54.41%." @default.
- W4313444819 created "2023-01-06" @default.
- W4313444819 creator A5004912928 @default.
- W4313444819 creator A5012285809 @default.
- W4313444819 date "2023-01-01" @default.
- W4313444819 modified "2023-10-13" @default.
- W4313444819 title "Classification of the Severity of Attacks on Internet of Things Networks" @default.
- W4313444819 cites W1689099703 @default.
- W4313444819 cites W1980156780 @default.
- W4313444819 cites W1992965417 @default.
- W4313444819 cites W2009190469 @default.
- W4313444819 cites W2058401212 @default.
- W4313444819 cites W2096180760 @default.
- W4313444819 cites W2105103777 @default.
- W4313444819 cites W2134295053 @default.
- W4313444819 cites W2134867305 @default.
- W4313444819 cites W2578676998 @default.
- W4313444819 cites W2617697157 @default.
- W4313444819 cites W2626046334 @default.
- W4313444819 cites W2765887224 @default.
- W4313444819 cites W2766070792 @default.
- W4313444819 cites W2768058902 @default.
- W4313444819 cites W2771783069 @default.
- W4313444819 cites W2800738502 @default.
- W4313444819 cites W2846676623 @default.
- W4313444819 cites W3140817226 @default.
- W4313444819 cites W321033892 @default.
- W4313444819 doi "https://doi.org/10.1007/978-981-19-5443-6_31" @default.
- W4313444819 hasPublicationYear "2023" @default.
- W4313444819 type Work @default.
- W4313444819 citedByCount "4" @default.
- W4313444819 crossrefType "book-chapter" @default.
- W4313444819 hasAuthorship W4313444819A5004912928 @default.
- W4313444819 hasAuthorship W4313444819A5012285809 @default.
- W4313444819 hasConcept C110875604 @default.
- W4313444819 hasConcept C119857082 @default.
- W4313444819 hasConcept C12267149 @default.
- W4313444819 hasConcept C124101348 @default.
- W4313444819 hasConcept C136764020 @default.
- W4313444819 hasConcept C154945302 @default.
- W4313444819 hasConcept C169258074 @default.
- W4313444819 hasConcept C182590292 @default.
- W4313444819 hasConcept C35525427 @default.
- W4313444819 hasConcept C38652104 @default.
- W4313444819 hasConcept C41008148 @default.
- W4313444819 hasConcept C81860439 @default.
- W4313444819 hasConcept C84525736 @default.
- W4313444819 hasConcept C95623464 @default.
- W4313444819 hasConceptScore W4313444819C110875604 @default.
- W4313444819 hasConceptScore W4313444819C119857082 @default.
- W4313444819 hasConceptScore W4313444819C12267149 @default.
- W4313444819 hasConceptScore W4313444819C124101348 @default.
- W4313444819 hasConceptScore W4313444819C136764020 @default.
- W4313444819 hasConceptScore W4313444819C154945302 @default.
- W4313444819 hasConceptScore W4313444819C169258074 @default.
- W4313444819 hasConceptScore W4313444819C182590292 @default.
- W4313444819 hasConceptScore W4313444819C35525427 @default.
- W4313444819 hasConceptScore W4313444819C38652104 @default.
- W4313444819 hasConceptScore W4313444819C41008148 @default.
- W4313444819 hasConceptScore W4313444819C81860439 @default.
- W4313444819 hasConceptScore W4313444819C84525736 @default.
- W4313444819 hasConceptScore W4313444819C95623464 @default.
- W4313444819 hasLocation W43134448191 @default.
- W4313444819 hasOpenAccess W4313444819 @default.
- W4313444819 hasPrimaryLocation W43134448191 @default.
- W4313444819 hasRelatedWork W3034132578 @default.
- W4313444819 hasRelatedWork W3195168932 @default.
- W4313444819 hasRelatedWork W4308191010 @default.
- W4313444819 hasRelatedWork W4321636153 @default.
- W4313444819 hasRelatedWork W4377964522 @default.
- W4313444819 hasRelatedWork W4381414210 @default.
- W4313444819 hasRelatedWork W4383535405 @default.
- W4313444819 hasRelatedWork W4384345534 @default.
- W4313444819 hasRelatedWork W4386072274 @default.
- W4313444819 hasRelatedWork W4386123260 @default.
- W4313444819 isParatext "false" @default.
- W4313444819 isRetracted "false" @default.
- W4313444819 workType "book-chapter" @default.