Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313444831> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4313444831 endingPage "606" @default.
- W4313444831 startingPage "591" @default.
- W4313444831 abstract "The aim of this paper is to compare and contrast between deep learning (DL) and various machine learning (ML) algorithms for fungi classification. The Danish Fungi data set provided by Kaggle, for this study. Only, 10 classes from the provided data set were extracted which consists of 1775 images. In this work, the used machine learning techniques are decision tree (DT), Naive Bayes (NB), K-nearest neighbour (KNN) and random forest tree (RFT) and achieved accuracies of 25, 28, 29 and 33%, respectively. The reason for low accuracies for the machine learning algorithms is because machine learning algorithms are usually used for numerical data and not suitable for images. Deep learning model using Keras was used to achieve an accuracy of 75.82%. On comparing the quantitative metrics like precision, recall, f1-scores, it can be concluded that deep learning algorithms are much better than machine learning algorithms." @default.
- W4313444831 created "2023-01-06" @default.
- W4313444831 creator A5025139549 @default.
- W4313444831 creator A5060789195 @default.
- W4313444831 creator A5072084138 @default.
- W4313444831 creator A5085401402 @default.
- W4313444831 date "2023-01-01" @default.
- W4313444831 modified "2023-10-16" @default.
- W4313444831 title "Comparative Study of Machine Learning and Deep Learning for Fungi Classification" @default.
- W4313444831 cites W1978654848 @default.
- W4313444831 cites W1986324410 @default.
- W4313444831 cites W1988195734 @default.
- W4313444831 cites W2076131212 @default.
- W4313444831 cites W2102731100 @default.
- W4313444831 cites W2170756173 @default.
- W4313444831 cites W2598645336 @default.
- W4313444831 cites W2761181345 @default.
- W4313444831 cites W2768309023 @default.
- W4313444831 cites W2799078346 @default.
- W4313444831 cites W2899370105 @default.
- W4313444831 cites W2915286763 @default.
- W4313444831 cites W2940100101 @default.
- W4313444831 cites W2986973265 @default.
- W4313444831 cites W3005887254 @default.
- W4313444831 cites W3008785076 @default.
- W4313444831 cites W3021295476 @default.
- W4313444831 cites W3089088541 @default.
- W4313444831 cites W3119599498 @default.
- W4313444831 cites W3174232586 @default.
- W4313444831 cites W3189504567 @default.
- W4313444831 doi "https://doi.org/10.1007/978-981-19-5443-6_45" @default.
- W4313444831 hasPublicationYear "2023" @default.
- W4313444831 type Work @default.
- W4313444831 citedByCount "1" @default.
- W4313444831 crossrefType "book-chapter" @default.
- W4313444831 hasAuthorship W4313444831A5025139549 @default.
- W4313444831 hasAuthorship W4313444831A5060789195 @default.
- W4313444831 hasAuthorship W4313444831A5072084138 @default.
- W4313444831 hasAuthorship W4313444831A5085401402 @default.
- W4313444831 hasConcept C108583219 @default.
- W4313444831 hasConcept C11413529 @default.
- W4313444831 hasConcept C119857082 @default.
- W4313444831 hasConcept C12267149 @default.
- W4313444831 hasConcept C154945302 @default.
- W4313444831 hasConcept C169258074 @default.
- W4313444831 hasConcept C24138899 @default.
- W4313444831 hasConcept C41008148 @default.
- W4313444831 hasConcept C52001869 @default.
- W4313444831 hasConcept C8038995 @default.
- W4313444831 hasConcept C81669768 @default.
- W4313444831 hasConcept C84525736 @default.
- W4313444831 hasConceptScore W4313444831C108583219 @default.
- W4313444831 hasConceptScore W4313444831C11413529 @default.
- W4313444831 hasConceptScore W4313444831C119857082 @default.
- W4313444831 hasConceptScore W4313444831C12267149 @default.
- W4313444831 hasConceptScore W4313444831C154945302 @default.
- W4313444831 hasConceptScore W4313444831C169258074 @default.
- W4313444831 hasConceptScore W4313444831C24138899 @default.
- W4313444831 hasConceptScore W4313444831C41008148 @default.
- W4313444831 hasConceptScore W4313444831C52001869 @default.
- W4313444831 hasConceptScore W4313444831C8038995 @default.
- W4313444831 hasConceptScore W4313444831C81669768 @default.
- W4313444831 hasConceptScore W4313444831C84525736 @default.
- W4313444831 hasLocation W43134448311 @default.
- W4313444831 hasOpenAccess W4313444831 @default.
- W4313444831 hasPrimaryLocation W43134448311 @default.
- W4313444831 hasRelatedWork W2597787948 @default.
- W4313444831 hasRelatedWork W2940523548 @default.
- W4313444831 hasRelatedWork W3014845282 @default.
- W4313444831 hasRelatedWork W3082405293 @default.
- W4313444831 hasRelatedWork W3184024203 @default.
- W4313444831 hasRelatedWork W3208584567 @default.
- W4313444831 hasRelatedWork W4223564025 @default.
- W4313444831 hasRelatedWork W4285189805 @default.
- W4313444831 hasRelatedWork W4285225238 @default.
- W4313444831 hasRelatedWork W4382585365 @default.
- W4313444831 isParatext "false" @default.
- W4313444831 isRetracted "false" @default.
- W4313444831 workType "book-chapter" @default.