Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313444868> ?p ?o ?g. }
- W4313444868 endingPage "535" @default.
- W4313444868 startingPage "517" @default.
- W4313444868 abstract "Scene classification is a process in which a computer’s visualizations of a scene are mapped to segments. Then, the machine applies deep learning to do the task. Indoor scene classification is more challenging than outside scene classification due to unpredictability. Over the last several years, numerous approaches for indoor scene classification have been created, and each of them is faced with a unique set of difficulties. Accuracy is the greatest issue with all of them. Since DL methods, in particular, CNNs, can automatically filter features without negatively impacting overall performance, they have become a practical solution for scene classification. CNN’s are a long-term technique used to classify images. Large-scale training dataset is needed to train for CNNs. Additionally, developing an entirely new CNN architecture is complicated from the bottom up. In this case, transfer learning, which provides desirable outcomes with small datasets, is the best approach. This work introduces a novel method for transferring images to the class using the CNN model and later also the VGG-19 pretrained model. The VGG-19 network is extraordinarily deep and was trained on a large number of different pictures including complex classification problems. Independently trained models are used to show the values through indoor and outdoor training programs. The experiment has been done on two different datasets like SUN397 and Places365 using both algorithms CNN and VGG-19. The comparison has been made of these algorithms into with existing AlexNet model and it is found that the VGG-19 has outperformed among all." @default.
- W4313444868 created "2023-01-06" @default.
- W4313444868 creator A5008465855 @default.
- W4313444868 creator A5021647095 @default.
- W4313444868 creator A5032337354 @default.
- W4313444868 creator A5036375785 @default.
- W4313444868 date "2023-01-01" @default.
- W4313444868 modified "2023-10-16" @default.
- W4313444868 title "Classification of Indoor–Outdoor Scene Using Deep Learning Techniques" @default.
- W4313444868 cites W1491912111 @default.
- W4313444868 cites W1968591910 @default.
- W4313444868 cites W1988530808 @default.
- W4313444868 cites W2007306648 @default.
- W4313444868 cites W2064369514 @default.
- W4313444868 cites W2065637301 @default.
- W4313444868 cites W2070411261 @default.
- W4313444868 cites W2077498881 @default.
- W4313444868 cites W2083781955 @default.
- W4313444868 cites W2103883348 @default.
- W4313444868 cites W2120626191 @default.
- W4313444868 cites W2146803734 @default.
- W4313444868 cites W2395579298 @default.
- W4313444868 cites W2538765646 @default.
- W4313444868 cites W2545218283 @default.
- W4313444868 cites W2546523301 @default.
- W4313444868 cites W2592621934 @default.
- W4313444868 cites W2624285712 @default.
- W4313444868 cites W2715220489 @default.
- W4313444868 cites W2745234869 @default.
- W4313444868 cites W2776636865 @default.
- W4313444868 cites W2792857687 @default.
- W4313444868 cites W2804532080 @default.
- W4313444868 cites W2889766600 @default.
- W4313444868 cites W2901659627 @default.
- W4313444868 cites W2903700990 @default.
- W4313444868 cites W2939078647 @default.
- W4313444868 cites W2941044501 @default.
- W4313444868 cites W2943570773 @default.
- W4313444868 cites W2974633867 @default.
- W4313444868 cites W2997597702 @default.
- W4313444868 cites W3000312913 @default.
- W4313444868 cites W3004414388 @default.
- W4313444868 cites W3013949455 @default.
- W4313444868 cites W3018488394 @default.
- W4313444868 cites W3026999132 @default.
- W4313444868 cites W3046290480 @default.
- W4313444868 cites W3093685377 @default.
- W4313444868 cites W3107983239 @default.
- W4313444868 cites W3128700363 @default.
- W4313444868 cites W3129169341 @default.
- W4313444868 cites W3163633929 @default.
- W4313444868 cites W4248802569 @default.
- W4313444868 doi "https://doi.org/10.1007/978-981-19-5868-7_38" @default.
- W4313444868 hasPublicationYear "2023" @default.
- W4313444868 type Work @default.
- W4313444868 citedByCount "0" @default.
- W4313444868 crossrefType "book-chapter" @default.
- W4313444868 hasAuthorship W4313444868A5008465855 @default.
- W4313444868 hasAuthorship W4313444868A5021647095 @default.
- W4313444868 hasAuthorship W4313444868A5032337354 @default.
- W4313444868 hasAuthorship W4313444868A5036375785 @default.
- W4313444868 hasConcept C106131492 @default.
- W4313444868 hasConcept C108583219 @default.
- W4313444868 hasConcept C111919701 @default.
- W4313444868 hasConcept C115961682 @default.
- W4313444868 hasConcept C119857082 @default.
- W4313444868 hasConcept C127413603 @default.
- W4313444868 hasConcept C150899416 @default.
- W4313444868 hasConcept C153180895 @default.
- W4313444868 hasConcept C154945302 @default.
- W4313444868 hasConcept C177264268 @default.
- W4313444868 hasConcept C199360897 @default.
- W4313444868 hasConcept C201995342 @default.
- W4313444868 hasConcept C205649164 @default.
- W4313444868 hasConcept C2777212361 @default.
- W4313444868 hasConcept C2778755073 @default.
- W4313444868 hasConcept C2780451532 @default.
- W4313444868 hasConcept C31972630 @default.
- W4313444868 hasConcept C41008148 @default.
- W4313444868 hasConcept C58640448 @default.
- W4313444868 hasConcept C75294576 @default.
- W4313444868 hasConcept C81363708 @default.
- W4313444868 hasConcept C98045186 @default.
- W4313444868 hasConceptScore W4313444868C106131492 @default.
- W4313444868 hasConceptScore W4313444868C108583219 @default.
- W4313444868 hasConceptScore W4313444868C111919701 @default.
- W4313444868 hasConceptScore W4313444868C115961682 @default.
- W4313444868 hasConceptScore W4313444868C119857082 @default.
- W4313444868 hasConceptScore W4313444868C127413603 @default.
- W4313444868 hasConceptScore W4313444868C150899416 @default.
- W4313444868 hasConceptScore W4313444868C153180895 @default.
- W4313444868 hasConceptScore W4313444868C154945302 @default.
- W4313444868 hasConceptScore W4313444868C177264268 @default.
- W4313444868 hasConceptScore W4313444868C199360897 @default.
- W4313444868 hasConceptScore W4313444868C201995342 @default.
- W4313444868 hasConceptScore W4313444868C205649164 @default.
- W4313444868 hasConceptScore W4313444868C2777212361 @default.
- W4313444868 hasConceptScore W4313444868C2778755073 @default.