Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313444874> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4313444874 endingPage "545" @default.
- W4313444874 startingPage "537" @default.
- W4313444874 abstract "Agricultural lands need a lot of water for yield production. Water scarcity is becoming a significant problem on Earth. Reference evapotranspiration ( $$text {ET}_0$$ ) estimation has a vital role in water management for irrigation purposes. This paper implements four variants of decision tree (DT)-based machine learning (ML) algorithms, including DT, random forest (RF), ExtraTrees regression (ET), and gradient boosting regression (GBR) to predict $$text {ET}_0$$ using two feature sets of the dataset from the Raipur weather station in Chhattisgarh, India, collected from the India Meteorological Department (IMD). Results showed that GBR performs better than other variants in featureset-1 considering temperatures as input (MAE = 1.6660, MSE = 1.9684, and RMSE = 1.332), and in featureset-2 with all input variables, ExtraTrees regression is performing better than others (MAE, MSE, and RMSE values are 1.0972, 1.7754, and 1.3441, respectively). RMSE values compared with the two neural network-based prediction algorithms. In featureset-1, GBR is more efficient than others, whereas in featureset-2, differential evolution-based radial basis function neural network (RBFDE) is the winner. Comparisons conclude that decision tree-based ML methods could be a better choice with fewer input variables." @default.
- W4313444874 created "2023-01-06" @default.
- W4313444874 creator A5001621638 @default.
- W4313444874 creator A5026947232 @default.
- W4313444874 date "2023-01-01" @default.
- W4313444874 modified "2023-10-16" @default.
- W4313444874 title "Prediction of the Reference Evapotranspiration Data from Raipur Weather Station in Chhattisgarh using Decision Tree-Based Machine Learning Techniques" @default.
- W4313444874 cites W1987986396 @default.
- W4313444874 cites W2010778044 @default.
- W4313444874 cites W2041447177 @default.
- W4313444874 cites W2064675550 @default.
- W4313444874 cites W2302448852 @default.
- W4313444874 cites W2920819147 @default.
- W4313444874 cites W3010047009 @default.
- W4313444874 cites W3032793208 @default.
- W4313444874 cites W3081241543 @default.
- W4313444874 cites W3094572470 @default.
- W4313444874 cites W3119192682 @default.
- W4313444874 cites W3182761853 @default.
- W4313444874 cites W4200490413 @default.
- W4313444874 cites W4250664506 @default.
- W4313444874 doi "https://doi.org/10.1007/978-981-19-5868-7_39" @default.
- W4313444874 hasPublicationYear "2023" @default.
- W4313444874 type Work @default.
- W4313444874 citedByCount "0" @default.
- W4313444874 crossrefType "book-chapter" @default.
- W4313444874 hasAuthorship W4313444874A5001621638 @default.
- W4313444874 hasAuthorship W4313444874A5026947232 @default.
- W4313444874 hasConcept C105795698 @default.
- W4313444874 hasConcept C119857082 @default.
- W4313444874 hasConcept C124101348 @default.
- W4313444874 hasConcept C139945424 @default.
- W4313444874 hasConcept C152877465 @default.
- W4313444874 hasConcept C154945302 @default.
- W4313444874 hasConcept C169258074 @default.
- W4313444874 hasConcept C176783924 @default.
- W4313444874 hasConcept C18903297 @default.
- W4313444874 hasConcept C205649164 @default.
- W4313444874 hasConcept C33923547 @default.
- W4313444874 hasConcept C41008148 @default.
- W4313444874 hasConcept C46686674 @default.
- W4313444874 hasConcept C48921125 @default.
- W4313444874 hasConcept C50644808 @default.
- W4313444874 hasConcept C70153297 @default.
- W4313444874 hasConcept C83546350 @default.
- W4313444874 hasConcept C84525736 @default.
- W4313444874 hasConcept C86803240 @default.
- W4313444874 hasConceptScore W4313444874C105795698 @default.
- W4313444874 hasConceptScore W4313444874C119857082 @default.
- W4313444874 hasConceptScore W4313444874C124101348 @default.
- W4313444874 hasConceptScore W4313444874C139945424 @default.
- W4313444874 hasConceptScore W4313444874C152877465 @default.
- W4313444874 hasConceptScore W4313444874C154945302 @default.
- W4313444874 hasConceptScore W4313444874C169258074 @default.
- W4313444874 hasConceptScore W4313444874C176783924 @default.
- W4313444874 hasConceptScore W4313444874C18903297 @default.
- W4313444874 hasConceptScore W4313444874C205649164 @default.
- W4313444874 hasConceptScore W4313444874C33923547 @default.
- W4313444874 hasConceptScore W4313444874C41008148 @default.
- W4313444874 hasConceptScore W4313444874C46686674 @default.
- W4313444874 hasConceptScore W4313444874C48921125 @default.
- W4313444874 hasConceptScore W4313444874C50644808 @default.
- W4313444874 hasConceptScore W4313444874C70153297 @default.
- W4313444874 hasConceptScore W4313444874C83546350 @default.
- W4313444874 hasConceptScore W4313444874C84525736 @default.
- W4313444874 hasConceptScore W4313444874C86803240 @default.
- W4313444874 hasLocation W43134448741 @default.
- W4313444874 hasOpenAccess W4313444874 @default.
- W4313444874 hasPrimaryLocation W43134448741 @default.
- W4313444874 hasRelatedWork W3200719183 @default.
- W4313444874 hasRelatedWork W3204021295 @default.
- W4313444874 hasRelatedWork W4200057378 @default.
- W4313444874 hasRelatedWork W4288057626 @default.
- W4313444874 hasRelatedWork W4293069612 @default.
- W4313444874 hasRelatedWork W4296081764 @default.
- W4313444874 hasRelatedWork W4300642372 @default.
- W4313444874 hasRelatedWork W4307266384 @default.
- W4313444874 hasRelatedWork W4328133444 @default.
- W4313444874 hasRelatedWork W4364860121 @default.
- W4313444874 isParatext "false" @default.
- W4313444874 isRetracted "false" @default.
- W4313444874 workType "book-chapter" @default.