Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313445021> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4313445021 endingPage "217" @default.
- W4313445021 startingPage "205" @default.
- W4313445021 abstract "In this paper, we present a neural network architecture for minimally supervised regression of surface electromyographic (sEMG) signals into control commands to drive robotic grasping devices. The proposed architecture overcomes one of the limitations of state-of-the-art supervised regression approaches, which require an instant by instant labelling of the training dataset. This is achieved by deploying a differentiable version of the Dynamic Time Warping (DTW) similarity measure as loss function of a feed-forward neural network. The effectiveness of this approach was assessed both with simulation and experimental studies. We first used a model of the sEMG generation process to test the feasibility of the method. Then, we evaluated the proposed approach in a two-step experimental session involving a group of 10 subjects: an offline experiment was conducted to investigate neural network performance with desynchronized labelling, whereas an online experiment was carried out to control both a simulated and a real robotic hand. The obtained results demonstrate that the presented method allows minimally supervised regression of sEMG signals, reporting performances comparable with standard supervised approaches. In this relation, we show that the proposed soft-DTW neural network enables successful myocontrol of robotic hands even in presence of substantial temporal misalignments between sEMG trainset and related labelling, while supervised regression totally loses its capabilities. This means that the presented approach allows a greatly simplified training procedure that can pave the way to an innovative myocontrol framework characterized by highly simplified training procedures for the user without performance degradation." @default.
- W4313445021 created "2023-01-06" @default.
- W4313445021 creator A5007245384 @default.
- W4313445021 creator A5038240894 @default.
- W4313445021 creator A5066669177 @default.
- W4313445021 creator A5082136401 @default.
- W4313445021 date "2023-01-01" @default.
- W4313445021 modified "2023-10-16" @default.
- W4313445021 title "Simulative and Experimental Evaluation of a Soft-DTW Neural Network for sEMG-Based Robotic Grasping" @default.
- W4313445021 cites W1809394698 @default.
- W4313445021 cites W1975033238 @default.
- W4313445021 cites W2003451856 @default.
- W4313445021 cites W2097292795 @default.
- W4313445021 cites W2232834065 @default.
- W4313445021 cites W2766242384 @default.
- W4313445021 cites W2792578571 @default.
- W4313445021 cites W2965778427 @default.
- W4313445021 cites W2967015309 @default.
- W4313445021 cites W2977419794 @default.
- W4313445021 cites W4240592325 @default.
- W4313445021 cites W4322388202 @default.
- W4313445021 doi "https://doi.org/10.1007/978-3-031-22731-8_15" @default.
- W4313445021 hasPublicationYear "2023" @default.
- W4313445021 type Work @default.
- W4313445021 citedByCount "0" @default.
- W4313445021 crossrefType "book-chapter" @default.
- W4313445021 hasAuthorship W4313445021A5007245384 @default.
- W4313445021 hasAuthorship W4313445021A5038240894 @default.
- W4313445021 hasAuthorship W4313445021A5066669177 @default.
- W4313445021 hasAuthorship W4313445021A5082136401 @default.
- W4313445021 hasConcept C103278499 @default.
- W4313445021 hasConcept C11171543 @default.
- W4313445021 hasConcept C111919701 @default.
- W4313445021 hasConcept C115961682 @default.
- W4313445021 hasConcept C119857082 @default.
- W4313445021 hasConcept C153180895 @default.
- W4313445021 hasConcept C154945302 @default.
- W4313445021 hasConcept C15744967 @default.
- W4313445021 hasConcept C41008148 @default.
- W4313445021 hasConcept C50644808 @default.
- W4313445021 hasConcept C83546350 @default.
- W4313445021 hasConcept C88516994 @default.
- W4313445021 hasConcept C98045186 @default.
- W4313445021 hasConceptScore W4313445021C103278499 @default.
- W4313445021 hasConceptScore W4313445021C11171543 @default.
- W4313445021 hasConceptScore W4313445021C111919701 @default.
- W4313445021 hasConceptScore W4313445021C115961682 @default.
- W4313445021 hasConceptScore W4313445021C119857082 @default.
- W4313445021 hasConceptScore W4313445021C153180895 @default.
- W4313445021 hasConceptScore W4313445021C154945302 @default.
- W4313445021 hasConceptScore W4313445021C15744967 @default.
- W4313445021 hasConceptScore W4313445021C41008148 @default.
- W4313445021 hasConceptScore W4313445021C50644808 @default.
- W4313445021 hasConceptScore W4313445021C83546350 @default.
- W4313445021 hasConceptScore W4313445021C88516994 @default.
- W4313445021 hasConceptScore W4313445021C98045186 @default.
- W4313445021 hasLocation W43134450211 @default.
- W4313445021 hasOpenAccess W4313445021 @default.
- W4313445021 hasPrimaryLocation W43134450211 @default.
- W4313445021 hasRelatedWork W2015538044 @default.
- W4313445021 hasRelatedWork W2810523766 @default.
- W4313445021 hasRelatedWork W2900794075 @default.
- W4313445021 hasRelatedWork W2961085424 @default.
- W4313445021 hasRelatedWork W3183633970 @default.
- W4313445021 hasRelatedWork W3208309985 @default.
- W4313445021 hasRelatedWork W4289653936 @default.
- W4313445021 hasRelatedWork W4306674287 @default.
- W4313445021 hasRelatedWork W1629725936 @default.
- W4313445021 hasRelatedWork W2164844972 @default.
- W4313445021 isParatext "false" @default.
- W4313445021 isRetracted "false" @default.
- W4313445021 workType "book-chapter" @default.