Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313445185> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4313445185 endingPage "777" @default.
- W4313445185 startingPage "767" @default.
- W4313445185 abstract "Due to the rise in smartphone apps and increase in the usage of Android, there are a lot of security issues. Security issues need to be addressed in order to prevent vulnerabilities and identify them prior mishap. People who use smartphones are linked to a warning about the risks. Most people who use mobile phones do not have to think about a few negative possibilities when they install Android Package Kit (APK) files from different sources. It is important to have a system that can tell if the code in Android app is harmful. The first step in this work is to look at the Android APK datasets. Both good and bad APKs are analyzed, and the dataset is processed. The signatures that are hidden in the APKs are identified and extracted. This will make it easier to build a training dataset. Then, it is checked to see if each APK has the permissions it needs and how it affects the way it works. Once it’s been cleaned, a dataset is made so that the model can be trained to predict malware. To finish the predictive analytics, any APK outside of the APKs is chosen and used. That’s when it is possible to figure out how likely it is that the new APK will have corruptive code in it. Machine learning is used to track the results of different prediction measures, such as how long it takes, how accurate they are, and how much they cost. This article describes a machine learning technique to solve functional selection by safeguarding the selection and mutation operators of genetic algorithms. The proposed method is adaptable during population calculations in the training set. Furthermore, for various population sizes, it gives the best possible probability of resolving function selection difficulties during the training process. Furthermore, the work is combined with a better classifier in order to detect the different malware categories. The proposed approach is compared and validated with current techniques by using different datasets, wherein this approach shows elevated results in terms of accuracy." @default.
- W4313445185 created "2023-01-06" @default.
- W4313445185 creator A5018591522 @default.
- W4313445185 creator A5044103955 @default.
- W4313445185 date "2023-01-01" @default.
- W4313445185 modified "2023-10-16" @default.
- W4313445185 title "An Effectual Analytics and Approach for Avoidance of Malware in Android Using Deep Neural Networks" @default.
- W4313445185 cites W1982730827 @default.
- W4313445185 cites W1999728176 @default.
- W4313445185 cites W2018316318 @default.
- W4313445185 cites W2085700758 @default.
- W4313445185 cites W2099525266 @default.
- W4313445185 cites W2324464293 @default.
- W4313445185 cites W2551095084 @default.
- W4313445185 cites W2574022511 @default.
- W4313445185 cites W2591102410 @default.
- W4313445185 cites W2599823825 @default.
- W4313445185 cites W2606250847 @default.
- W4313445185 cites W2735533479 @default.
- W4313445185 cites W2737578512 @default.
- W4313445185 cites W2789983203 @default.
- W4313445185 cites W2792310543 @default.
- W4313445185 cites W2792736988 @default.
- W4313445185 cites W2885070483 @default.
- W4313445185 cites W2900275727 @default.
- W4313445185 cites W2906139053 @default.
- W4313445185 cites W2932089240 @default.
- W4313445185 cites W2962992787 @default.
- W4313445185 cites W2963401022 @default.
- W4313445185 cites W3009109922 @default.
- W4313445185 cites W3185191662 @default.
- W4313445185 cites W4249633238 @default.
- W4313445185 doi "https://doi.org/10.1007/978-981-19-5443-6_58" @default.
- W4313445185 hasPublicationYear "2023" @default.
- W4313445185 type Work @default.
- W4313445185 citedByCount "0" @default.
- W4313445185 crossrefType "book-chapter" @default.
- W4313445185 hasAuthorship W4313445185A5018591522 @default.
- W4313445185 hasAuthorship W4313445185A5044103955 @default.
- W4313445185 hasConcept C111919701 @default.
- W4313445185 hasConcept C119857082 @default.
- W4313445185 hasConcept C124101348 @default.
- W4313445185 hasConcept C154945302 @default.
- W4313445185 hasConcept C2989133298 @default.
- W4313445185 hasConcept C38652104 @default.
- W4313445185 hasConcept C41008148 @default.
- W4313445185 hasConcept C541664917 @default.
- W4313445185 hasConcept C557433098 @default.
- W4313445185 hasConcept C79158427 @default.
- W4313445185 hasConceptScore W4313445185C111919701 @default.
- W4313445185 hasConceptScore W4313445185C119857082 @default.
- W4313445185 hasConceptScore W4313445185C124101348 @default.
- W4313445185 hasConceptScore W4313445185C154945302 @default.
- W4313445185 hasConceptScore W4313445185C2989133298 @default.
- W4313445185 hasConceptScore W4313445185C38652104 @default.
- W4313445185 hasConceptScore W4313445185C41008148 @default.
- W4313445185 hasConceptScore W4313445185C541664917 @default.
- W4313445185 hasConceptScore W4313445185C557433098 @default.
- W4313445185 hasConceptScore W4313445185C79158427 @default.
- W4313445185 hasLocation W43134451851 @default.
- W4313445185 hasOpenAccess W4313445185 @default.
- W4313445185 hasPrimaryLocation W43134451851 @default.
- W4313445185 hasRelatedWork W1981999315 @default.
- W4313445185 hasRelatedWork W2792027525 @default.
- W4313445185 hasRelatedWork W2945522736 @default.
- W4313445185 hasRelatedWork W2964088652 @default.
- W4313445185 hasRelatedWork W3012546138 @default.
- W4313445185 hasRelatedWork W3105429705 @default.
- W4313445185 hasRelatedWork W3114980949 @default.
- W4313445185 hasRelatedWork W4210772651 @default.
- W4313445185 hasRelatedWork W4225292389 @default.
- W4313445185 hasRelatedWork W4353031795 @default.
- W4313445185 isParatext "false" @default.
- W4313445185 isRetracted "false" @default.
- W4313445185 workType "book-chapter" @default.