Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313446419> ?p ?o ?g. }
- W4313446419 abstract "Tidal flats are among the ecologically richest areas of the world where sediment composition (e.g. median grain size and silt content) and the macrozoobenthic presence play an important role in the health of the ecosystem. Regular monitoring of environmental and ecological variables is essential for sustainable management of the area. While monitoring based on field sampling is very time-consuming, the predictive performance of these variables using satellite images is low due to the spectral homogeneity over these regions. We tested a novel approach that uses features from a variational autoencoder (VAE) model to enhance the predictive performance of remote sensing images for environmental and ecological variables of tidal flats. The model was trained using the Sentinel-2 spectral bands to reproduce the input images, and during this process, the VAE model represents important information on the tidal flats within its layer structure. The information in the layers of the trained model was extracted to form features with identical spatial coverage to the spectral bands. The features and the spectral bands together form the input to random forest models to predict field observations of the sediment characteristics such as median grain size and silt content, as well as the macrozoobenthic biomass and species richness. The maximum prediction accuracy of feature-based maps was close to 62% for the sediment characteristics and 37% for benthic fauna indices. The encoded features improved the prediction accuracy of the random forest regressor model by 15% points on average in comparison to using just the spectral bands. Our method enhances the predictive performance of remote sensing, in particular the spatiotemporal dynamics in median grain size and silt content of the sediment thereby contributing to better-informed management of coastal ecosystems." @default.
- W4313446419 created "2023-01-06" @default.
- W4313446419 creator A5008372422 @default.
- W4313446419 creator A5025069484 @default.
- W4313446419 creator A5038255186 @default.
- W4313446419 creator A5046684242 @default.
- W4313446419 creator A5054561214 @default.
- W4313446419 creator A5078034455 @default.
- W4313446419 creator A5084969996 @default.
- W4313446419 date "2023-01-03" @default.
- W4313446419 modified "2023-10-18" @default.
- W4313446419 title "Enhancing the predictive performance of remote sensing for ecological variables of tidal flats using encoded features from a deep learning model" @default.
- W4313446419 cites W107619411 @default.
- W4313446419 cites W1849277567 @default.
- W4313446419 cites W1915485278 @default.
- W4313446419 cites W1973396755 @default.
- W4313446419 cites W2000515020 @default.
- W4313446419 cites W2003150367 @default.
- W4313446419 cites W2007740227 @default.
- W4313446419 cites W2039595616 @default.
- W4313446419 cites W2047803006 @default.
- W4313446419 cites W2053180127 @default.
- W4313446419 cites W2055004342 @default.
- W4313446419 cites W2058731966 @default.
- W4313446419 cites W2064997090 @default.
- W4313446419 cites W2077225861 @default.
- W4313446419 cites W2083667808 @default.
- W4313446419 cites W2084639035 @default.
- W4313446419 cites W2086557208 @default.
- W4313446419 cites W2095649738 @default.
- W4313446419 cites W2096135877 @default.
- W4313446419 cites W2116898681 @default.
- W4313446419 cites W2123887297 @default.
- W4313446419 cites W2151520047 @default.
- W4313446419 cites W2162278674 @default.
- W4313446419 cites W2162381189 @default.
- W4313446419 cites W2164595573 @default.
- W4313446419 cites W2194775991 @default.
- W4313446419 cites W2322700932 @default.
- W4313446419 cites W2557038583 @default.
- W4313446419 cites W2789609993 @default.
- W4313446419 cites W2796410914 @default.
- W4313446419 cites W2802953454 @default.
- W4313446419 cites W2877947164 @default.
- W4313446419 cites W2883640872 @default.
- W4313446419 cites W2888723145 @default.
- W4313446419 cites W2903592875 @default.
- W4313446419 cites W2963446712 @default.
- W4313446419 cites W2973710071 @default.
- W4313446419 cites W2982495255 @default.
- W4313446419 cites W3011307553 @default.
- W4313446419 cites W3094163441 @default.
- W4313446419 cites W3153642253 @default.
- W4313446419 cites W3167866996 @default.
- W4313446419 cites W3176678755 @default.
- W4313446419 cites W3182706339 @default.
- W4313446419 cites W4231109964 @default.
- W4313446419 doi "https://doi.org/10.1080/15481603.2022.2163048" @default.
- W4313446419 hasPublicationYear "2023" @default.
- W4313446419 type Work @default.
- W4313446419 citedByCount "1" @default.
- W4313446419 countsByYear W43134464192023 @default.
- W4313446419 crossrefType "journal-article" @default.
- W4313446419 hasAuthorship W4313446419A5008372422 @default.
- W4313446419 hasAuthorship W4313446419A5025069484 @default.
- W4313446419 hasAuthorship W4313446419A5038255186 @default.
- W4313446419 hasAuthorship W4313446419A5046684242 @default.
- W4313446419 hasAuthorship W4313446419A5054561214 @default.
- W4313446419 hasAuthorship W4313446419A5078034455 @default.
- W4313446419 hasAuthorship W4313446419A5084969996 @default.
- W4313446419 hasBestOaLocation W43134464191 @default.
- W4313446419 hasConcept C119857082 @default.
- W4313446419 hasConcept C127313418 @default.
- W4313446419 hasConcept C151730666 @default.
- W4313446419 hasConcept C154945302 @default.
- W4313446419 hasConcept C161222754 @default.
- W4313446419 hasConcept C169258074 @default.
- W4313446419 hasConcept C18903297 @default.
- W4313446419 hasConcept C205649164 @default.
- W4313446419 hasConcept C39432304 @default.
- W4313446419 hasConcept C41008148 @default.
- W4313446419 hasConcept C45804977 @default.
- W4313446419 hasConcept C53565203 @default.
- W4313446419 hasConcept C62649853 @default.
- W4313446419 hasConcept C86803240 @default.
- W4313446419 hasConceptScore W4313446419C119857082 @default.
- W4313446419 hasConceptScore W4313446419C127313418 @default.
- W4313446419 hasConceptScore W4313446419C151730666 @default.
- W4313446419 hasConceptScore W4313446419C154945302 @default.
- W4313446419 hasConceptScore W4313446419C161222754 @default.
- W4313446419 hasConceptScore W4313446419C169258074 @default.
- W4313446419 hasConceptScore W4313446419C18903297 @default.
- W4313446419 hasConceptScore W4313446419C205649164 @default.
- W4313446419 hasConceptScore W4313446419C39432304 @default.
- W4313446419 hasConceptScore W4313446419C41008148 @default.
- W4313446419 hasConceptScore W4313446419C45804977 @default.
- W4313446419 hasConceptScore W4313446419C53565203 @default.
- W4313446419 hasConceptScore W4313446419C62649853 @default.
- W4313446419 hasConceptScore W4313446419C86803240 @default.
- W4313446419 hasFunder F4320321800 @default.