Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313446488> ?p ?o ?g. }
- W4313446488 endingPage "12" @default.
- W4313446488 startingPage "1" @default.
- W4313446488 abstract "Combining additive models and neural networks allows to broaden the scope of statistical regression and extend deep learning-based approaches by interpretable structured additive predictors at the same time. Existing attempts uniting the two modeling approaches are, however, limited to very specific combinations and, more importantly, involve an identifiability issue. As a consequence, interpretability and stable estimation are typically lost. We propose a general framework to combine structured regression models and deep neural networks into a unifying network architecture. To overcome the inherent identifiability issues between different model parts, we construct an orthogonalization cell that projects the deep neural network into the orthogonal complement of the statistical model predictor. This enables proper estimation of structured model parts and thereby interpretability. We demonstrate the framework’s efficacy in numerical experiments and illustrate its special merits in benchmarks and real-world applications." @default.
- W4313446488 created "2023-01-06" @default.
- W4313446488 creator A5009563869 @default.
- W4313446488 creator A5067248213 @default.
- W4313446488 creator A5075066925 @default.
- W4313446488 date "2023-02-10" @default.
- W4313446488 modified "2023-09-29" @default.
- W4313446488 title "Semi-Structured Distributional Regression" @default.
- W4313446488 cites W1423766661 @default.
- W4313446488 cites W1968835864 @default.
- W4313446488 cites W2033279096 @default.
- W4313446488 cites W2096904991 @default.
- W4313446488 cites W2103496339 @default.
- W4313446488 cites W2108694197 @default.
- W4313446488 cites W2137983211 @default.
- W4313446488 cites W2154065358 @default.
- W4313446488 cites W2161500689 @default.
- W4313446488 cites W2162430620 @default.
- W4313446488 cites W2166163519 @default.
- W4313446488 cites W2475334473 @default.
- W4313446488 cites W2488424576 @default.
- W4313446488 cites W2593046461 @default.
- W4313446488 cites W2729601249 @default.
- W4313446488 cites W2765302304 @default.
- W4313446488 cites W2784329230 @default.
- W4313446488 cites W2801490189 @default.
- W4313446488 cites W2889845402 @default.
- W4313446488 cites W2963991960 @default.
- W4313446488 cites W3101380508 @default.
- W4313446488 cites W3105439568 @default.
- W4313446488 cites W3112717819 @default.
- W4313446488 cites W3130324139 @default.
- W4313446488 cites W3134774296 @default.
- W4313446488 cites W4241653265 @default.
- W4313446488 doi "https://doi.org/10.1080/00031305.2022.2164054" @default.
- W4313446488 hasPublicationYear "2023" @default.
- W4313446488 type Work @default.
- W4313446488 citedByCount "0" @default.
- W4313446488 crossrefType "journal-article" @default.
- W4313446488 hasAuthorship W4313446488A5009563869 @default.
- W4313446488 hasAuthorship W4313446488A5067248213 @default.
- W4313446488 hasAuthorship W4313446488A5075066925 @default.
- W4313446488 hasBestOaLocation W43134464882 @default.
- W4313446488 hasConcept C104317684 @default.
- W4313446488 hasConcept C105795698 @default.
- W4313446488 hasConcept C108583219 @default.
- W4313446488 hasConcept C112313634 @default.
- W4313446488 hasConcept C11413529 @default.
- W4313446488 hasConcept C114289077 @default.
- W4313446488 hasConcept C119857082 @default.
- W4313446488 hasConcept C122770356 @default.
- W4313446488 hasConcept C124101348 @default.
- W4313446488 hasConcept C127716648 @default.
- W4313446488 hasConcept C154945302 @default.
- W4313446488 hasConcept C185592680 @default.
- W4313446488 hasConcept C188082640 @default.
- W4313446488 hasConcept C199360897 @default.
- W4313446488 hasConcept C2780801425 @default.
- W4313446488 hasConcept C2781067378 @default.
- W4313446488 hasConcept C33923547 @default.
- W4313446488 hasConcept C41008148 @default.
- W4313446488 hasConcept C47559304 @default.
- W4313446488 hasConcept C50644808 @default.
- W4313446488 hasConcept C55493867 @default.
- W4313446488 hasConcept C83546350 @default.
- W4313446488 hasConceptScore W4313446488C104317684 @default.
- W4313446488 hasConceptScore W4313446488C105795698 @default.
- W4313446488 hasConceptScore W4313446488C108583219 @default.
- W4313446488 hasConceptScore W4313446488C112313634 @default.
- W4313446488 hasConceptScore W4313446488C11413529 @default.
- W4313446488 hasConceptScore W4313446488C114289077 @default.
- W4313446488 hasConceptScore W4313446488C119857082 @default.
- W4313446488 hasConceptScore W4313446488C122770356 @default.
- W4313446488 hasConceptScore W4313446488C124101348 @default.
- W4313446488 hasConceptScore W4313446488C127716648 @default.
- W4313446488 hasConceptScore W4313446488C154945302 @default.
- W4313446488 hasConceptScore W4313446488C185592680 @default.
- W4313446488 hasConceptScore W4313446488C188082640 @default.
- W4313446488 hasConceptScore W4313446488C199360897 @default.
- W4313446488 hasConceptScore W4313446488C2780801425 @default.
- W4313446488 hasConceptScore W4313446488C2781067378 @default.
- W4313446488 hasConceptScore W4313446488C33923547 @default.
- W4313446488 hasConceptScore W4313446488C41008148 @default.
- W4313446488 hasConceptScore W4313446488C47559304 @default.
- W4313446488 hasConceptScore W4313446488C50644808 @default.
- W4313446488 hasConceptScore W4313446488C55493867 @default.
- W4313446488 hasConceptScore W4313446488C83546350 @default.
- W4313446488 hasFunder F4320320879 @default.
- W4313446488 hasLocation W43134464881 @default.
- W4313446488 hasLocation W43134464882 @default.
- W4313446488 hasOpenAccess W4313446488 @default.
- W4313446488 hasPrimaryLocation W43134464881 @default.
- W4313446488 hasRelatedWork W2605281151 @default.
- W4313446488 hasRelatedWork W2909645158 @default.
- W4313446488 hasRelatedWork W3006943036 @default.
- W4313446488 hasRelatedWork W3128206771 @default.
- W4313446488 hasRelatedWork W3191046242 @default.
- W4313446488 hasRelatedWork W3208423683 @default.