Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313446528> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4313446528 abstract "Background Quantitative US (QUS) using radiofrequency data analysis has been recently introduced for noninvasive evaluation of hepatic steatosis. Deep learning algorithms may improve the diagnostic performance of QUS for hepatic steatosis. Purpose To evaluate a two-dimensional (2D) convolutional neural network (CNN) algorithm using QUS parametric maps and B-mode images for diagnosis of hepatic steatosis, with the MRI-derived proton density fat fraction (PDFF) as the reference standard, in patients with nonalcoholic fatty liver disease (NAFLD). Materials and Methods: Consecutive adult participants with suspected NAFLD were prospectively enrolled at a single academic medical center from July 2020 to June 2021. Using radiofrequency data analysis, two QUS parameters (tissue attenuation imaging [TAI] and tissue scatter-distribution imaging [TSI]) were measured. On B-mode images, hepatic steatosis was graded using visual scoring (none, mild, moderate, or severe). Using B-mode images and two QUS parametric maps (TAI and TSI) as input data, the algorithm estimated the US fat fraction (USFF) as a percentage. The correlation between the USFF and MRI PDFF was evaluated using the Pearson correlation coefficient. The diagnostic performance of the USFF for hepatic steatosis (MRI PDFF ≥5%) was evaluated using receiver operating characteristic curve analysis and compared with that of TAI, TSI, and visual scoring. Results Overall, 173 participants (mean age, 51 years ± 14 [SD]; 96 men) were included, with 126 (73%) having hepatic steatosis (MRI PDFF ≥5%). USFF correlated strongly with MRI PDFF (Pearson r = 0.86, 95% CI: 0.82, 0.90; P < .001). For diagnosing hepatic steatosis (MRI PDFF ≥5%), the USFF yielded an area under the receiver operating characteristic curve of 0.97 (95% CI: 0.93, 0.99), higher than those of TAI, TSI, and visual scoring (P = .015, .006, and < .001, respectively), with a sensitivity of 90% (95% CI: 84, 95 [114 of 126]) and a specificity of 91% (95% CI: 80, 98 [43 of 47]) at a cutoff value of 5.7%. Conclusion A deep learning algorithm using quantitative US parametric maps and B-mode images accurately estimated the hepatic fat fraction and diagnosed hepatic steatosis in participants with nonalcoholic fatty liver disease. ClinicalTrials.gov registration nos. NCT04462562, NCT04180631 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Sidhu and Fang in this issue." @default.
- W4313446528 created "2023-01-06" @default.
- W4313446528 creator A5012689406 @default.
- W4313446528 creator A5024539141 @default.
- W4313446528 creator A5046136185 @default.
- W4313446528 creator A5053320499 @default.
- W4313446528 creator A5085900799 @default.
- W4313446528 date "2023-04-01" @default.
- W4313446528 modified "2023-09-30" @default.
- W4313446528 title "Two-dimensional Convolutional Neural Network Using Quantitative US for Noninvasive Assessment of Hepatic Steatosis in NAFLD" @default.
- W4313446528 cites W1904783243 @default.
- W4313446528 cites W2008750507 @default.
- W4313446528 cites W2010450923 @default.
- W4313446528 cites W2014351118 @default.
- W4313446528 cites W2035540248 @default.
- W4313446528 cites W2066473433 @default.
- W4313446528 cites W2076450230 @default.
- W4313446528 cites W2122571344 @default.
- W4313446528 cites W2130672074 @default.
- W4313446528 cites W2137356781 @default.
- W4313446528 cites W2150847578 @default.
- W4313446528 cites W2204688218 @default.
- W4313446528 cites W2280059135 @default.
- W4313446528 cites W2519289952 @default.
- W4313446528 cites W2531638670 @default.
- W4313446528 cites W2593832540 @default.
- W4313446528 cites W2810423511 @default.
- W4313446528 cites W2885478230 @default.
- W4313446528 cites W3004891277 @default.
- W4313446528 cites W3007926128 @default.
- W4313446528 cites W3021811356 @default.
- W4313446528 cites W3023602175 @default.
- W4313446528 cites W3117083078 @default.
- W4313446528 cites W3137643741 @default.
- W4313446528 cites W3199340922 @default.
- W4313446528 cites W3200969151 @default.
- W4313446528 cites W4206995677 @default.
- W4313446528 cites W4221025545 @default.
- W4313446528 doi "https://doi.org/10.1148/radiol.221510" @default.
- W4313446528 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36594835" @default.
- W4313446528 hasPublicationYear "2023" @default.
- W4313446528 type Work @default.
- W4313446528 citedByCount "5" @default.
- W4313446528 countsByYear W43134465282023 @default.
- W4313446528 crossrefType "journal-article" @default.
- W4313446528 hasAuthorship W4313446528A5012689406 @default.
- W4313446528 hasAuthorship W4313446528A5024539141 @default.
- W4313446528 hasAuthorship W4313446528A5046136185 @default.
- W4313446528 hasAuthorship W4313446528A5053320499 @default.
- W4313446528 hasAuthorship W4313446528A5085900799 @default.
- W4313446528 hasConcept C126322002 @default.
- W4313446528 hasConcept C126838900 @default.
- W4313446528 hasConcept C154945302 @default.
- W4313446528 hasConcept C2776175330 @default.
- W4313446528 hasConcept C2776954865 @default.
- W4313446528 hasConcept C2778772119 @default.
- W4313446528 hasConcept C2779134260 @default.
- W4313446528 hasConcept C2989005 @default.
- W4313446528 hasConcept C41008148 @default.
- W4313446528 hasConcept C58471807 @default.
- W4313446528 hasConcept C71924100 @default.
- W4313446528 hasConcept C81363708 @default.
- W4313446528 hasConceptScore W4313446528C126322002 @default.
- W4313446528 hasConceptScore W4313446528C126838900 @default.
- W4313446528 hasConceptScore W4313446528C154945302 @default.
- W4313446528 hasConceptScore W4313446528C2776175330 @default.
- W4313446528 hasConceptScore W4313446528C2776954865 @default.
- W4313446528 hasConceptScore W4313446528C2778772119 @default.
- W4313446528 hasConceptScore W4313446528C2779134260 @default.
- W4313446528 hasConceptScore W4313446528C2989005 @default.
- W4313446528 hasConceptScore W4313446528C41008148 @default.
- W4313446528 hasConceptScore W4313446528C58471807 @default.
- W4313446528 hasConceptScore W4313446528C71924100 @default.
- W4313446528 hasConceptScore W4313446528C81363708 @default.
- W4313446528 hasFunder F4320317149 @default.
- W4313446528 hasIssue "1" @default.
- W4313446528 hasLocation W43134465281 @default.
- W4313446528 hasLocation W43134465282 @default.
- W4313446528 hasOpenAccess W4313446528 @default.
- W4313446528 hasPrimaryLocation W43134465281 @default.
- W4313446528 hasRelatedWork W1662251433 @default.
- W4313446528 hasRelatedWork W1695174616 @default.
- W4313446528 hasRelatedWork W1973843004 @default.
- W4313446528 hasRelatedWork W2333604368 @default.
- W4313446528 hasRelatedWork W2946433789 @default.
- W4313446528 hasRelatedWork W3123910101 @default.
- W4313446528 hasRelatedWork W4214587189 @default.
- W4313446528 hasRelatedWork W4225006813 @default.
- W4313446528 hasRelatedWork W4225900419 @default.
- W4313446528 hasRelatedWork W4386093368 @default.
- W4313446528 hasVolume "307" @default.
- W4313446528 isParatext "false" @default.
- W4313446528 isRetracted "false" @default.
- W4313446528 workType "article" @default.