Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313446718> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W4313446718 abstract "HomeRadiologyVol. 307, No. 1 PreviousNext Reviews and CommentaryEditorialImpact of Molecular Subtype Definitions on AI Classification of Breast Cancer at MRIMin Sun Bae Min Sun Bae Author AffiliationsFrom the Department of Radiology, Inha University Hospital, 27 Inhang-ro, Jung-gu, Incheon 22332, Republic of Korea.Address correspondence to the author (email: [email protected]).Min Sun Bae Published Online:Jan 3 2023https://doi.org/10.1148/radiol.223041MoreSectionsFull textPDF ToolsImage ViewerAdd to favoritesCiteTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinked In References1. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012;490(7418):61–70. Crossref, Medline, Google Scholar2. Grimm LJ, Johnson KS, Marcom PK, Baker JA, Soo MS. Can breast cancer molecular subtype help to select patients for preoperative MR imaging? Radiology 2015;274(2):352–358. Link, Google Scholar3. Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thürlimann B, Senn HJ; Panel members. Strategies for subtypes--dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 2011;22(8):1736–1747. Crossref, Medline, Google Scholar4. Sutton EJ, Dashevsky BZ, Oh JH, et al. Breast cancer molecular subtype classifier that incorporates MRI features. J Magn Reson Imaging 2016;44(1):122–129. Crossref, Medline, Google Scholar5. Bismeijer T, van der Velden BHM, Canisius S, et al. Radiogenomic analysis of breast cancer by linking MRI phenotypes with tumor gene expression. Radiology 2020;296(2):277–287. Link, Google Scholar6. Ji Y, Whitney HM, Li H, Peifang L, Giger ML, Zhang X. Differences in molecular subtype reference standards impact AI-based breast cancer classification with dynamic contrast-enhanced MRI. Radiology 2023;307(1):e220984. Link, Google Scholar7. Truhn D, Schrading S, Haarburger C, Schneider H, Merhof D, Kuhl C. Radiomic versus convolutional neural networks analysis for classification of contrast-enhancing lesions at multiparametric breast MRI. Radiology 2019;290(2):290–297. Link, Google Scholar8. Mahoney MC, Gatsonis C, Hanna L, DeMartini WB, Lehman C. Positive predictive value of BI-RADS MR imaging. Radiology 2012;264(1):51–58. Link, Google Scholar9. Uematsu T, Kasami M, Yuen S. Triple-negative breast cancer: correlation between MR imaging and pathologic findings. Radiology 2009;250(3):638–647. Link, Google Scholar10. Pinker K, Chin J, Melsaether AN, Morris EA, Moy L. Precision medicine and radiogenomics in breast cancer: new approaches toward diagnosis and treatment. Radiology 2018;287(3):732–747. Link, Google ScholarArticle HistoryReceived: Nov 24 2022Revision requested: Dec 5 2022Revision received: Dec 8 2022Accepted: Dec 12 2022Published online: Jan 03 2023 FiguresReferencesRelatedDetailsAccompanying This ArticleDifferences in Molecular Subtype Reference Standards Impact AI-based Breast Cancer Classification with Dynamic Contrast-enhanced MRIJan 3 2023RadiologyRecommended Articles Intratumoral Spatial Heterogeneity at Perfusion MR Imaging Predicts Recurrence-free Survival in Locally Advanced Breast Cancer Treated with Neoadjuvant ChemotherapyRadiology2018Volume: 288Issue: 1pp. 26-35Breast Cancer Tissue Markers, Genomic Profiling, and Other Prognostic Factors: A Primer for RadiologistsRadioGraphics2018Volume: 38Issue: 7pp. 1902-1920Receptor-based Surrogate Subtypes and Discrepancies with Breast Cancer Intrinsic Subtypes: Implications for Image Biomarker DevelopmentRadiology2018Volume: 289Issue: 1pp. 210-217Multimodality Imaging Review of HER2-positive Breast Cancer and Response to Neoadjuvant ChemotherapyRadioGraphics2023Volume: 43Issue: 2Precision Medicine and Radiogenomics in Breast Cancer: New Approaches toward Diagnosis and TreatmentRadiology2018Volume: 287Issue: 3pp. 732-747See More RSNA Education Exhibits A Review of the Imaging Features of Triple Negative-breast CancersDigital Posters2020How to Predict Breast Cancer Molecular Subtype through Imaging Phenotype at MRIDigital Posters2020A-Z of Triple Negative Breast CancerDigital Posters2022 RSNA Case Collection Male invasive Ductal Carcinoma RSNA Case Collection2022Invasive ductal carcinomaRSNA Case Collection2020Slow-growing cancerRSNA Case Collection2020 Vol. 307, No. 1 Metrics Altmetric Score PDF download" @default.
- W4313446718 created "2023-01-06" @default.
- W4313446718 creator A5027445487 @default.
- W4313446718 date "2023-04-01" @default.
- W4313446718 modified "2023-09-23" @default.
- W4313446718 title "Impact of Molecular Subtype Definitions on AI Classification of Breast Cancer at MRI" @default.
- W4313446718 cites W2096283457 @default.
- W4313446718 cites W2100240570 @default.
- W4313446718 cites W2114420006 @default.
- W4313446718 cites W2132893003 @default.
- W4313446718 cites W2137028359 @default.
- W4313446718 cites W2234908568 @default.
- W4313446718 cites W2803669118 @default.
- W4313446718 cites W2900955936 @default.
- W4313446718 cites W3032073115 @default.
- W4313446718 cites W4313446613 @default.
- W4313446718 doi "https://doi.org/10.1148/radiol.223041" @default.
- W4313446718 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36594840" @default.
- W4313446718 hasPublicationYear "2023" @default.
- W4313446718 type Work @default.
- W4313446718 citedByCount "1" @default.
- W4313446718 countsByYear W43134467182023 @default.
- W4313446718 crossrefType "journal-article" @default.
- W4313446718 hasAuthorship W4313446718A5027445487 @default.
- W4313446718 hasConcept C121608353 @default.
- W4313446718 hasConcept C126322002 @default.
- W4313446718 hasConcept C143998085 @default.
- W4313446718 hasConcept C17744445 @default.
- W4313446718 hasConcept C199539241 @default.
- W4313446718 hasConcept C2779473830 @default.
- W4313446718 hasConcept C530470458 @default.
- W4313446718 hasConcept C71924100 @default.
- W4313446718 hasConceptScore W4313446718C121608353 @default.
- W4313446718 hasConceptScore W4313446718C126322002 @default.
- W4313446718 hasConceptScore W4313446718C143998085 @default.
- W4313446718 hasConceptScore W4313446718C17744445 @default.
- W4313446718 hasConceptScore W4313446718C199539241 @default.
- W4313446718 hasConceptScore W4313446718C2779473830 @default.
- W4313446718 hasConceptScore W4313446718C530470458 @default.
- W4313446718 hasConceptScore W4313446718C71924100 @default.
- W4313446718 hasIssue "1" @default.
- W4313446718 hasLocation W43134467181 @default.
- W4313446718 hasLocation W43134467182 @default.
- W4313446718 hasOpenAccess W4313446718 @default.
- W4313446718 hasPrimaryLocation W43134467181 @default.
- W4313446718 hasRelatedWork W1595863544 @default.
- W4313446718 hasRelatedWork W2014447844 @default.
- W4313446718 hasRelatedWork W2113427382 @default.
- W4313446718 hasRelatedWork W2224319365 @default.
- W4313446718 hasRelatedWork W2297592050 @default.
- W4313446718 hasRelatedWork W2989121736 @default.
- W4313446718 hasRelatedWork W3130591221 @default.
- W4313446718 hasRelatedWork W3196332669 @default.
- W4313446718 hasRelatedWork W4286448049 @default.
- W4313446718 hasRelatedWork W4365129602 @default.
- W4313446718 hasVolume "307" @default.
- W4313446718 isParatext "false" @default.
- W4313446718 isRetracted "false" @default.
- W4313446718 workType "article" @default.