Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313447447> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4313447447 abstract "Redshift measurement has always been a constant need in modern astronomy and cosmology. And as new surveys have been providing an immense amount of data on astronomical objects, the need to process such data automatically proves to be increasingly necessary. In this article, we use simulated data from the Dark Energy Survey, and from a pipeline originally created to classify supernovae, we developed a linear regression algorithm optimized through novel automated machine learning (AutoML) frameworks achieving an error score better than ordinary data pre-processing methods when compared with other modern algorithms (such as XGBOOST). Numerically, the photometric prediction RMSE of type Ia supernovae events was reduced from 0.16 to 0.09 and the RMSE of all supernovae types decreased from 0.20 to 0.14. Our pipeline consists of four steps: through spectroscopic data points we interpolate the light curve using Gaussian process fitting algorithm, then using a wavelet transform we extract the most important features of such curves; in sequence we reduce the dimensionality of such features through principal component analysis, and in the end we applied super learning techniques (stacked ensemble methods) through an AutoML framework dedicated to optimize the parameters of several different machine learning models, better resolving the problem. As a final check, we obtained probability distribution functions (PDFs) using Gaussian kernel density estimations through the predictions of more than 50 models trained and optimized by AutoML. Those PDFs were calculated to replicate the original curves that used SALT2 model, a model used for the simulation of the raw data itself." @default.
- W4313447447 created "2023-01-06" @default.
- W4313447447 creator A5005477906 @default.
- W4313447447 creator A5086773957 @default.
- W4313447447 creator A5091022702 @default.
- W4313447447 date "2022-12-30" @default.
- W4313447447 modified "2023-09-26" @default.
- W4313447447 title "Data-driven photometric redshift estimation from type Ia supernovae light curves" @default.
- W4313447447 doi "https://doi.org/10.48550/arxiv.2212.14668" @default.
- W4313447447 hasPublicationYear "2022" @default.
- W4313447447 type Work @default.
- W4313447447 citedByCount "0" @default.
- W4313447447 crossrefType "posted-content" @default.
- W4313447447 hasAuthorship W4313447447A5005477906 @default.
- W4313447447 hasAuthorship W4313447447A5086773957 @default.
- W4313447447 hasAuthorship W4313447447A5091022702 @default.
- W4313447447 hasBestOaLocation W43134474471 @default.
- W4313447447 hasConcept C111030470 @default.
- W4313447447 hasConcept C11413529 @default.
- W4313447447 hasConcept C114614502 @default.
- W4313447447 hasConcept C121332964 @default.
- W4313447447 hasConcept C127592171 @default.
- W4313447447 hasConcept C130726490 @default.
- W4313447447 hasConcept C153180895 @default.
- W4313447447 hasConcept C154945302 @default.
- W4313447447 hasConcept C163716315 @default.
- W4313447447 hasConcept C199360897 @default.
- W4313447447 hasConcept C33923547 @default.
- W4313447447 hasConcept C41008148 @default.
- W4313447447 hasConcept C43521106 @default.
- W4313447447 hasConcept C44870925 @default.
- W4313447447 hasConcept C61326573 @default.
- W4313447447 hasConcept C62520636 @default.
- W4313447447 hasConcept C7218915 @default.
- W4313447447 hasConcept C74193536 @default.
- W4313447447 hasConceptScore W4313447447C111030470 @default.
- W4313447447 hasConceptScore W4313447447C11413529 @default.
- W4313447447 hasConceptScore W4313447447C114614502 @default.
- W4313447447 hasConceptScore W4313447447C121332964 @default.
- W4313447447 hasConceptScore W4313447447C127592171 @default.
- W4313447447 hasConceptScore W4313447447C130726490 @default.
- W4313447447 hasConceptScore W4313447447C153180895 @default.
- W4313447447 hasConceptScore W4313447447C154945302 @default.
- W4313447447 hasConceptScore W4313447447C163716315 @default.
- W4313447447 hasConceptScore W4313447447C199360897 @default.
- W4313447447 hasConceptScore W4313447447C33923547 @default.
- W4313447447 hasConceptScore W4313447447C41008148 @default.
- W4313447447 hasConceptScore W4313447447C43521106 @default.
- W4313447447 hasConceptScore W4313447447C44870925 @default.
- W4313447447 hasConceptScore W4313447447C61326573 @default.
- W4313447447 hasConceptScore W4313447447C62520636 @default.
- W4313447447 hasConceptScore W4313447447C7218915 @default.
- W4313447447 hasConceptScore W4313447447C74193536 @default.
- W4313447447 hasLocation W43134474471 @default.
- W4313447447 hasOpenAccess W4313447447 @default.
- W4313447447 hasPrimaryLocation W43134474471 @default.
- W4313447447 hasRelatedWork W145098650 @default.
- W4313447447 hasRelatedWork W2099577980 @default.
- W4313447447 hasRelatedWork W2137872007 @default.
- W4313447447 hasRelatedWork W2142075636 @default.
- W4313447447 hasRelatedWork W2155899303 @default.
- W4313447447 hasRelatedWork W2170391517 @default.
- W4313447447 hasRelatedWork W2384408398 @default.
- W4313447447 hasRelatedWork W2415931830 @default.
- W4313447447 hasRelatedWork W4321072186 @default.
- W4313447447 hasRelatedWork W2183680581 @default.
- W4313447447 isParatext "false" @default.
- W4313447447 isRetracted "false" @default.
- W4313447447 workType "article" @default.