Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313447502> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4313447502 abstract "Line intensity mapping (LIM) is a promising probe to study star formation, the large-scale structure of the Universe, and the epoch of reionization (EoR). Since carbon monoxide (CO) is the second most abundant molecule in the Universe except for molecular hydrogen ${rm H}_2$, it is suitable as a tracer for LIM surveys. However, just like other LIM surveys, CO intensity mapping also suffers strong foreground contamination that needs to be eliminated for extracting valuable astrophysical and cosmological information. In this work, we take $^{12}$CO($it J$=1-0) emission line as an example to investigate whether deep learning method can effectively recover the signal by removing the foregrounds. The CO(1-0) intensity maps are generated by N-body simulations considering CO luminosity and halo mass relation, and we discuss two cases with median and low CO signals by comparing different relations. We add foregrounds generated from real observations, including thermal dust, spinning dust, free-free, synchrotron emission and CMB anisotropy. The beam with sidelobe effect is also considered. Our deep learning model is built upon ResUNet, which combines image generation algorithm UNet with the state-of-the-art architecture of deep learning, ResNet. The principal component analysis (PCA) method is employed to preprocess data before feeding it to the ResUNet. We find that, in the case of low instrumental noise, our UNet can efficiently reconstruct the CO signal map with correct line power spectrum by removing the foregrounds and recovering PCA signal loss and beam effects. Our method also can be applied to other intensity mappings like neutral hydrogen 21cm surveys." @default.
- W4313447502 created "2023-01-06" @default.
- W4313447502 creator A5028955713 @default.
- W4313447502 creator A5043039309 @default.
- W4313447502 creator A5067687146 @default.
- W4313447502 creator A5074140059 @default.
- W4313447502 creator A5074362176 @default.
- W4313447502 creator A5091086250 @default.
- W4313447502 date "2022-12-30" @default.
- W4313447502 modified "2023-10-08" @default.
- W4313447502 title "Foreground Removal of CO Intensity Mapping Using Deep Learning" @default.
- W4313447502 doi "https://doi.org/10.48550/arxiv.2212.14712" @default.
- W4313447502 hasPublicationYear "2022" @default.
- W4313447502 type Work @default.
- W4313447502 citedByCount "0" @default.
- W4313447502 crossrefType "posted-content" @default.
- W4313447502 hasAuthorship W4313447502A5028955713 @default.
- W4313447502 hasAuthorship W4313447502A5043039309 @default.
- W4313447502 hasAuthorship W4313447502A5067687146 @default.
- W4313447502 hasAuthorship W4313447502A5074140059 @default.
- W4313447502 hasAuthorship W4313447502A5074362176 @default.
- W4313447502 hasAuthorship W4313447502A5091086250 @default.
- W4313447502 hasBestOaLocation W43134475021 @default.
- W4313447502 hasConcept C108583219 @default.
- W4313447502 hasConcept C120665830 @default.
- W4313447502 hasConcept C121332964 @default.
- W4313447502 hasConcept C154945302 @default.
- W4313447502 hasConcept C164918935 @default.
- W4313447502 hasConcept C184665706 @default.
- W4313447502 hasConcept C198352243 @default.
- W4313447502 hasConcept C207297109 @default.
- W4313447502 hasConcept C2524010 @default.
- W4313447502 hasConcept C2777967070 @default.
- W4313447502 hasConcept C33024259 @default.
- W4313447502 hasConcept C33923547 @default.
- W4313447502 hasConcept C41008148 @default.
- W4313447502 hasConcept C44870925 @default.
- W4313447502 hasConcept C69672822 @default.
- W4313447502 hasConcept C85725439 @default.
- W4313447502 hasConcept C93038891 @default.
- W4313447502 hasConcept C98444146 @default.
- W4313447502 hasConceptScore W4313447502C108583219 @default.
- W4313447502 hasConceptScore W4313447502C120665830 @default.
- W4313447502 hasConceptScore W4313447502C121332964 @default.
- W4313447502 hasConceptScore W4313447502C154945302 @default.
- W4313447502 hasConceptScore W4313447502C164918935 @default.
- W4313447502 hasConceptScore W4313447502C184665706 @default.
- W4313447502 hasConceptScore W4313447502C198352243 @default.
- W4313447502 hasConceptScore W4313447502C207297109 @default.
- W4313447502 hasConceptScore W4313447502C2524010 @default.
- W4313447502 hasConceptScore W4313447502C2777967070 @default.
- W4313447502 hasConceptScore W4313447502C33024259 @default.
- W4313447502 hasConceptScore W4313447502C33923547 @default.
- W4313447502 hasConceptScore W4313447502C41008148 @default.
- W4313447502 hasConceptScore W4313447502C44870925 @default.
- W4313447502 hasConceptScore W4313447502C69672822 @default.
- W4313447502 hasConceptScore W4313447502C85725439 @default.
- W4313447502 hasConceptScore W4313447502C93038891 @default.
- W4313447502 hasConceptScore W4313447502C98444146 @default.
- W4313447502 hasLocation W43134475021 @default.
- W4313447502 hasOpenAccess W4313447502 @default.
- W4313447502 hasPrimaryLocation W43134475021 @default.
- W4313447502 hasRelatedWork W2020259086 @default.
- W4313447502 hasRelatedWork W2031659458 @default.
- W4313447502 hasRelatedWork W2148217704 @default.
- W4313447502 hasRelatedWork W2773103873 @default.
- W4313447502 hasRelatedWork W2788018373 @default.
- W4313447502 hasRelatedWork W3180554819 @default.
- W4313447502 hasRelatedWork W3205620411 @default.
- W4313447502 hasRelatedWork W4286491614 @default.
- W4313447502 hasRelatedWork W4308755602 @default.
- W4313447502 hasRelatedWork W4308843399 @default.
- W4313447502 isParatext "false" @default.
- W4313447502 isRetracted "false" @default.
- W4313447502 workType "article" @default.