Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313447765> ?p ?o ?g. }
- W4313447765 abstract "At the moment, the most accurate theoretical method to describe excitons is the solution of the Bethe-Salpeter equation in the GW approximation (GW-BSE). However, because of its computation cost, time-dependent density functional theory (TDDFT) is becoming the alternative approach to GW-BSE to describe excitons in solids. Nowadays, the most efficient strategy to describe optical spectra of solids in TDDFT is to use long-range corrected exchange-correlation kernels on top of GW or scissor-corrected energies. In recent years, a different strategy based on range-separated hybrid functionals started to be developed in the framework of time-dependent generalized Kohn-Sham density functional theory. Here we compare the performance of long-range corrected kernels with range-separated hybrid functionals for the description of excitons in solids. This comparison has the purpose to weight the pros and cons of using range-separated hybrid functionals, giving new perspectives for theoretical developments of these functionals. We illustrate the comparison for the case of Si and LiF, representative of solid-state excitons." @default.
- W4313447765 created "2023-01-06" @default.
- W4313447765 creator A5041184194 @default.
- W4313447765 creator A5055109030 @default.
- W4313447765 creator A5070310648 @default.
- W4313447765 creator A5070451298 @default.
- W4313447765 creator A5079159401 @default.
- W4313447765 date "2022-12-29" @default.
- W4313447765 modified "2023-10-18" @default.
- W4313447765 title "Comparison of long-range corrected kernels and range-separated hybrids for excitons in solids" @default.
- W4313447765 cites W1514411877 @default.
- W4313447765 cites W1561273442 @default.
- W4313447765 cites W1966757299 @default.
- W4313447765 cites W1967866204 @default.
- W4313447765 cites W1970786684 @default.
- W4313447765 cites W1981368803 @default.
- W4313447765 cites W1982634418 @default.
- W4313447765 cites W1982722563 @default.
- W4313447765 cites W1998907352 @default.
- W4313447765 cites W2003588702 @default.
- W4313447765 cites W2011639382 @default.
- W4313447765 cites W2032813050 @default.
- W4313447765 cites W2036596420 @default.
- W4313447765 cites W2038170184 @default.
- W4313447765 cites W2053499780 @default.
- W4313447765 cites W2058723955 @default.
- W4313447765 cites W2059510387 @default.
- W4313447765 cites W2069258232 @default.
- W4313447765 cites W2071965345 @default.
- W4313447765 cites W2079105963 @default.
- W4313447765 cites W2079560921 @default.
- W4313447765 cites W2081838507 @default.
- W4313447765 cites W2083222334 @default.
- W4313447765 cites W2084421514 @default.
- W4313447765 cites W2097819932 @default.
- W4313447765 cites W2104757784 @default.
- W4313447765 cites W2115176652 @default.
- W4313447765 cites W2116403830 @default.
- W4313447765 cites W2147273027 @default.
- W4313447765 cites W2156561529 @default.
- W4313447765 cites W2165768408 @default.
- W4313447765 cites W2210465977 @default.
- W4313447765 cites W2526397171 @default.
- W4313447765 cites W2529136958 @default.
- W4313447765 cites W2564167688 @default.
- W4313447765 cites W2565236572 @default.
- W4313447765 cites W2592712886 @default.
- W4313447765 cites W2955646099 @default.
- W4313447765 cites W2962827485 @default.
- W4313447765 cites W2963000193 @default.
- W4313447765 cites W2995344306 @default.
- W4313447765 cites W3004100474 @default.
- W4313447765 cites W3013159546 @default.
- W4313447765 cites W3087511513 @default.
- W4313447765 cites W3105324085 @default.
- W4313447765 cites W3111223743 @default.
- W4313447765 cites W3129092176 @default.
- W4313447765 cites W3131166662 @default.
- W4313447765 cites W3199848271 @default.
- W4313447765 cites W4224212171 @default.
- W4313447765 doi "https://doi.org/10.1103/physrevb.106.235158" @default.
- W4313447765 hasPublicationYear "2022" @default.
- W4313447765 type Work @default.
- W4313447765 citedByCount "1" @default.
- W4313447765 countsByYear W43134477652023 @default.
- W4313447765 crossrefType "journal-article" @default.
- W4313447765 hasAuthorship W4313447765A5041184194 @default.
- W4313447765 hasAuthorship W4313447765A5055109030 @default.
- W4313447765 hasAuthorship W4313447765A5070310648 @default.
- W4313447765 hasAuthorship W4313447765A5070451298 @default.
- W4313447765 hasAuthorship W4313447765A5079159401 @default.
- W4313447765 hasBestOaLocation W43134477652 @default.
- W4313447765 hasConcept C11413529 @default.
- W4313447765 hasConcept C121332964 @default.
- W4313447765 hasConcept C121864883 @default.
- W4313447765 hasConcept C152365726 @default.
- W4313447765 hasConcept C159985019 @default.
- W4313447765 hasConcept C17729963 @default.
- W4313447765 hasConcept C192562407 @default.
- W4313447765 hasConcept C204323151 @default.
- W4313447765 hasConcept C20853536 @default.
- W4313447765 hasConcept C22693506 @default.
- W4313447765 hasConcept C30475298 @default.
- W4313447765 hasConcept C33923547 @default.
- W4313447765 hasConcept C45374587 @default.
- W4313447765 hasConcept C62520636 @default.
- W4313447765 hasConceptScore W4313447765C11413529 @default.
- W4313447765 hasConceptScore W4313447765C121332964 @default.
- W4313447765 hasConceptScore W4313447765C121864883 @default.
- W4313447765 hasConceptScore W4313447765C152365726 @default.
- W4313447765 hasConceptScore W4313447765C159985019 @default.
- W4313447765 hasConceptScore W4313447765C17729963 @default.
- W4313447765 hasConceptScore W4313447765C192562407 @default.
- W4313447765 hasConceptScore W4313447765C204323151 @default.
- W4313447765 hasConceptScore W4313447765C20853536 @default.
- W4313447765 hasConceptScore W4313447765C22693506 @default.
- W4313447765 hasConceptScore W4313447765C30475298 @default.
- W4313447765 hasConceptScore W4313447765C33923547 @default.
- W4313447765 hasConceptScore W4313447765C45374587 @default.
- W4313447765 hasConceptScore W4313447765C62520636 @default.