Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313448041> ?p ?o ?g. }
- W4313448041 abstract "The effects of chemical pressure on the structural and magnetic properties of the triple perovskite ${mathrm{Ba}}_{3}mathrm{Ni}{mathrm{Sb}}_{2}{mathrm{O}}_{9}$ are investigated by substituting ${mathrm{Sr}}^{2+}$ ions for ${mathrm{Ba}}^{2+}$ ions. Two ${mathrm{Ba}}_{3ensuremath{-}x}{mathrm{Sr}}_{x}mathrm{Ni}{mathrm{Sb}}_{2}{mathrm{O}}_{9}$ phases could be stabilized via a solid-state reaction at ambient pressure (AP) in air. The $6H$ with ${mathrm{Sb}}_{2}{mathrm{O}}_{9}$ pairs $(x=0)ensuremath{rightarrow}6H$ with $mathrm{NiSb}{mathrm{O}}_{9}$ pairs $(x=0.5)ensuremath{rightarrow}3C$ (cubic with corner-sharing octahedral, $x=1.25$) sequence of structural phases occurs with increasing Sr content, i.e., chemical pressure, which is like that previously reported for pure samples of ${mathrm{Ba}}_{3}mathrm{Ni}{mathrm{Sb}}_{2}{mathrm{O}}_{9}$ obtained under increasing high physical pressure (HP). For the $6H {mathrm{Ba}}_{2.5}{mathrm{Sr}}_{0.5}mathrm{Ni}{mathrm{Sb}}_{2}{mathrm{O}}_{9} (x=0.5)$ phase, using combined Rietveld refinements of powder x-ray and neutron diffraction patterns, precession electron diffraction tomography data collected on thin crystals, aberration-corrected high-angle annular dark field scanning transmission electron microscopy coupled to energy dispersive x-ray spectroscopy mapping, we reach the conclusion that the structure features corner-sharing $mathrm{Sb}{mathrm{O}}_{6}$ octahedra and $mathrm{NiSb}{mathrm{O}}_{9}$ pairs of face-shared octahedra (or Ni-Sb dumbbells) with either a random orientation of the Ni-Sb dumbbells or nanosized chemical correlations for the dumbbell arrangement. As observed in HP ${mathrm{Ba}}_{3}mathrm{Ni}{mathrm{Sb}}_{2}{mathrm{O}}_{9}$ produced through synthesis at 9 GPa, AP ${mathrm{Ba}}_{1.75}{mathrm{Sr}}_{1.25}mathrm{Ni}{mathrm{Sb}}_{2}{mathrm{O}}_{9} (x=1.25)$ crystallizes in a $3C$ double perovskite ${A}_{2}B{B}^{ensuremath{'}}{mathrm{O}}_{6}$ cubic structure where $A, B$, and ${B}^{ensuremath{'}}$ sites are occupied by (Ba + Sr), Sb, and $(frac{2}{3}mathrm{Ni}+frac{1}{3}mathrm{Sb})$ atoms, respectively. The ${B}^{ensuremath{'}}$ sites, which are randomly occupied by spin-1 ${mathrm{Ni}}^{2+}$ and diamagnetic ${mathrm{Sb}}^{5+}$, form a face-centered-cubic (FCC) sublattice where the ${mathrm{Ni}}^{2+}$ amount stays above the site percolation threshold. Weiss temperatures ($ensuremath{approx}ensuremath{-}65$ and $ensuremath{approx}ensuremath{-}213$ K for ${mathrm{Ba}}_{2.5}{mathrm{Sr}}_{0.5}mathrm{Ni}{mathrm{Sb}}_{2}{mathrm{O}}_{9}$ and ${mathrm{Ba}}_{1.75}{mathrm{Sr}}_{1.25}mathrm{Ni}{mathrm{Sb}}_{2}{mathrm{O}}_{9}$, respectively) indicate that dominant magnetic interactions between ${mathrm{Ni}}^{2+}$ spins are antiferromagnetic with magnitudes like those observed in the corresponding HP phases of pure ${mathrm{Ba}}_{3}mathrm{Ni}{mathrm{Sb}}_{2}{mathrm{O}}_{9}$. As for the $6H$ HP ${mathrm{Ba}}_{3}mathrm{Ni}{mathrm{Sb}}_{2}{mathrm{O}}_{9}$ compound, in $6H {mathrm{Ba}}_{2.5}{mathrm{Sr}}_{0.5}mathrm{Ni}{mathrm{Sb}}_{2}{mathrm{O}}_{9}$, muon spin relaxation $(ensuremath{mu}mathrm{SR})$ measurements identify a dynamic magnetic state down to the base temperature (95 mK), consistent with a previously published inelastic neutron scattering study. For $3C {mathrm{Ba}}_{1.75}{mathrm{Sr}}_{1.25}mathrm{Ni}{mathrm{Sb}}_{2}{mathrm{O}}_{9}, ensuremath{mu}mathrm{SR}$ and $^{121}mathrm{Sb}$ nuclear magnetic resonance measurements both indicate the presence of a transition to a static magnetic state below $11(1)$ K with a significant amount of disorder in this frozen state, in contrast to the spin-liquid state previously suggested for the $3C$ HP phase of ${mathrm{Ba}}_{3}mathrm{Ni}{mathrm{Sb}}_{2}{mathrm{O}}_{9}$. Consistently, a broad maximum is observed in the specific heat at the same temperature. Building on the structural data, the magnetic properties of HP $6H {mathrm{Ba}}_{3}mathrm{Ni}{mathrm{Sb}}_{2}{mathrm{O}}_{9}$ and AP $6H {mathrm{Ba}}_{2.5}{mathrm{Sr}}_{0.5}mathrm{Ni}{mathrm{Sb}}_{2}{mathrm{O}}_{9}$ are discussed in light of recent works on triangular and ${J}_{1}text{ensuremath{-}}{J}_{2}$ honeycomb systems with or without quenched disorder. We are led to the conclusion that the driving force toward a spin-liquid-like state is quenched disorder which needs to be incorporated in ${J}_{1}text{ensuremath{-}}{J}_{2}$ honeycomb models. Our evidence of a magnetic transition to a frozen magnetic ground state for the AP Sr-doped $3C$ phase is in line with models for geometrically frustrated FCC antiferromagnets. This calls for a better experimental and possibly theoretical understanding of the HP $3C$ phase." @default.
- W4313448041 created "2023-01-06" @default.
- W4313448041 creator A5005066587 @default.
- W4313448041 creator A5008934224 @default.
- W4313448041 creator A5011644056 @default.
- W4313448041 creator A5030368158 @default.
- W4313448041 creator A5031216229 @default.
- W4313448041 creator A5031501224 @default.
- W4313448041 creator A5042368357 @default.
- W4313448041 creator A5042823922 @default.
- W4313448041 creator A5052370435 @default.
- W4313448041 creator A5058584507 @default.
- W4313448041 creator A5063344756 @default.
- W4313448041 creator A5067242790 @default.
- W4313448041 creator A5074051138 @default.
- W4313448041 creator A5079633175 @default.
- W4313448041 creator A5087114307 @default.
- W4313448041 date "2022-12-20" @default.
- W4313448041 modified "2023-10-18" @default.
- W4313448041 title "Crystal structures, frustrated magnetism, and chemical pressure in Sr-doped <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML><mml:mrow><mml:msub><mml:mi>Ba</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:mi>Ni</mml:mi><mml:msub><mml:mi>Sb</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi mathvariant=normal>O</mml:mi><mml:mn>9</mml:mn></mml:msub></mml:mrow></mml:math> perovskites" @default.
- W4313448041 cites W1038216876 @default.
- W4313448041 cites W144793079 @default.
- W4313448041 cites W1661622528 @default.
- W4313448041 cites W1819175736 @default.
- W4313448041 cites W1900173860 @default.
- W4313448041 cites W1907278946 @default.
- W4313448041 cites W1934148720 @default.
- W4313448041 cites W1964389093 @default.
- W4313448041 cites W1982687907 @default.
- W4313448041 cites W1986754822 @default.
- W4313448041 cites W1996877013 @default.
- W4313448041 cites W1997738010 @default.
- W4313448041 cites W1997787999 @default.
- W4313448041 cites W2003928045 @default.
- W4313448041 cites W2005192899 @default.
- W4313448041 cites W2005421353 @default.
- W4313448041 cites W2006418860 @default.
- W4313448041 cites W2008112366 @default.
- W4313448041 cites W2009521670 @default.
- W4313448041 cites W2009957952 @default.
- W4313448041 cites W2011343611 @default.
- W4313448041 cites W2013836519 @default.
- W4313448041 cites W2014704612 @default.
- W4313448041 cites W2019418460 @default.
- W4313448041 cites W2020614667 @default.
- W4313448041 cites W2027568638 @default.
- W4313448041 cites W2028056984 @default.
- W4313448041 cites W2031112263 @default.
- W4313448041 cites W2032958522 @default.
- W4313448041 cites W2033377101 @default.
- W4313448041 cites W2035951953 @default.
- W4313448041 cites W2036704156 @default.
- W4313448041 cites W2040933393 @default.
- W4313448041 cites W2041726686 @default.
- W4313448041 cites W2044094173 @default.
- W4313448041 cites W2063009758 @default.
- W4313448041 cites W2067601213 @default.
- W4313448041 cites W2073997691 @default.
- W4313448041 cites W2078610595 @default.
- W4313448041 cites W2079149473 @default.
- W4313448041 cites W2082111726 @default.
- W4313448041 cites W2131302059 @default.
- W4313448041 cites W2147213837 @default.
- W4313448041 cites W2167590372 @default.
- W4313448041 cites W2256932856 @default.
- W4313448041 cites W2281122745 @default.
- W4313448041 cites W2325854262 @default.
- W4313448041 cites W2327828477 @default.
- W4313448041 cites W2412105395 @default.
- W4313448041 cites W2464231371 @default.
- W4313448041 cites W2465688274 @default.
- W4313448041 cites W2530430372 @default.
- W4313448041 cites W2575250974 @default.
- W4313448041 cites W2582268815 @default.
- W4313448041 cites W2616124598 @default.
- W4313448041 cites W2711773136 @default.
- W4313448041 cites W2735806552 @default.
- W4313448041 cites W2742144862 @default.
- W4313448041 cites W2745023385 @default.
- W4313448041 cites W2767519493 @default.
- W4313448041 cites W2781700559 @default.
- W4313448041 cites W2784386010 @default.
- W4313448041 cites W2787475963 @default.
- W4313448041 cites W2792142465 @default.
- W4313448041 cites W2803007159 @default.
- W4313448041 cites W2950164006 @default.
- W4313448041 cites W2969231025 @default.
- W4313448041 cites W3021177506 @default.
- W4313448041 cites W3101256710 @default.
- W4313448041 cites W3104860424 @default.
- W4313448041 cites W3105052732 @default.
- W4313448041 cites W3105351363 @default.
- W4313448041 cites W3200329638 @default.
- W4313448041 cites W581516376 @default.
- W4313448041 doi "https://doi.org/10.1103/physrevmaterials.6.124408" @default.
- W4313448041 hasPublicationYear "2022" @default.
- W4313448041 type Work @default.
- W4313448041 citedByCount "0" @default.
- W4313448041 crossrefType "journal-article" @default.
- W4313448041 hasAuthorship W4313448041A5005066587 @default.