Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313448102> ?p ?o ?g. }
- W4313448102 abstract "While quantum circuits built from two-particle dual-unitary (maximally entangled) operators serve as minimal models of typically nonintegrable many-body systems, the construction and characterization of dual-unitary operators themselves are only partially understood. A nonlinear map on the space of unitary operators was proposed in PRL.~125, 070501 (2020) that results in operators being arbitrarily close to dual unitaries. Here we study the map analytically for the two-qubit case describing the basins of attraction, fixed points, and rates of approach to dual unitaries. A subset of dual-unitary operators having maximum entangling power are 2-unitary operators or perfect tensors, and are equivalent to four-party absolutely maximally entangled states. It is known that they only exist if the local dimension is larger than $d=2$. We use the nonlinear map, and introduce stochastic variants of it, to construct explicit examples of new dual and 2-unitary operators. A necessary criterion for their local unitary equivalence to distinguish classes is also introduced and used to display various concrete results and a conjecture in $d=3$. It is known that orthogonal Latin squares provide a ``classical combinatorial design for constructing permutations that are 2-unitary. We extend the underlying design from classical to genuine quantum ones for general dual-unitary operators and give an example of what might be the smallest sized genuinely quantum design of a 2-unitary in $d=4$." @default.
- W4313448102 created "2023-01-06" @default.
- W4313448102 creator A5015175312 @default.
- W4313448102 creator A5029275455 @default.
- W4313448102 creator A5087313169 @default.
- W4313448102 date "2022-12-20" @default.
- W4313448102 modified "2023-09-30" @default.
- W4313448102 title "Construction and Local Equivalence of Dual-Unitary Operators: From Dynamical Maps to Quantum Combinatorial Designs" @default.
- W4313448102 cites W1526473722 @default.
- W4313448102 cites W1542399484 @default.
- W4313448102 cites W1562369860 @default.
- W4313448102 cites W1588649002 @default.
- W4313448102 cites W1965673193 @default.
- W4313448102 cites W1977997915 @default.
- W4313448102 cites W1978847979 @default.
- W4313448102 cites W1981467185 @default.
- W4313448102 cites W1984086887 @default.
- W4313448102 cites W2000281602 @default.
- W4313448102 cites W2011944497 @default.
- W4313448102 cites W2024142334 @default.
- W4313448102 cites W2024859523 @default.
- W4313448102 cites W2026999464 @default.
- W4313448102 cites W2029289973 @default.
- W4313448102 cites W2029658458 @default.
- W4313448102 cites W2041308372 @default.
- W4313448102 cites W2064767171 @default.
- W4313448102 cites W2066365197 @default.
- W4313448102 cites W2072128606 @default.
- W4313448102 cites W2147733222 @default.
- W4313448102 cites W2162782880 @default.
- W4313448102 cites W2171823766 @default.
- W4313448102 cites W2254931868 @default.
- W4313448102 cites W2313323651 @default.
- W4313448102 cites W2320377306 @default.
- W4313448102 cites W2397826713 @default.
- W4313448102 cites W2515668066 @default.
- W4313448102 cites W2547234423 @default.
- W4313448102 cites W2594448544 @default.
- W4313448102 cites W2620407091 @default.
- W4313448102 cites W2749085385 @default.
- W4313448102 cites W2766333524 @default.
- W4313448102 cites W2766489791 @default.
- W4313448102 cites W2775696823 @default.
- W4313448102 cites W2781738013 @default.
- W4313448102 cites W2791488214 @default.
- W4313448102 cites W2797149274 @default.
- W4313448102 cites W2799034832 @default.
- W4313448102 cites W2913644427 @default.
- W4313448102 cites W2926751802 @default.
- W4313448102 cites W2950872758 @default.
- W4313448102 cites W2963048006 @default.
- W4313448102 cites W2990695459 @default.
- W4313448102 cites W2997645441 @default.
- W4313448102 cites W3013896097 @default.
- W4313448102 cites W3017225535 @default.
- W4313448102 cites W3021094358 @default.
- W4313448102 cites W3037443854 @default.
- W4313448102 cites W3045462524 @default.
- W4313448102 cites W3084325236 @default.
- W4313448102 cites W3094015348 @default.
- W4313448102 cites W3094337027 @default.
- W4313448102 cites W3097070339 @default.
- W4313448102 cites W3099021446 @default.
- W4313448102 cites W3099036907 @default.
- W4313448102 cites W3100755341 @default.
- W4313448102 cites W3101479050 @default.
- W4313448102 cites W3102711922 @default.
- W4313448102 cites W3103254216 @default.
- W4313448102 cites W3103982829 @default.
- W4313448102 cites W3104057828 @default.
- W4313448102 cites W3105015276 @default.
- W4313448102 cites W3112167980 @default.
- W4313448102 cites W3114058289 @default.
- W4313448102 cites W3114801172 @default.
- W4313448102 cites W3117345688 @default.
- W4313448102 cites W3124034453 @default.
- W4313448102 cites W3134336374 @default.
- W4313448102 cites W3155896906 @default.
- W4313448102 cites W3164167509 @default.
- W4313448102 cites W3167882172 @default.
- W4313448102 cites W3196431641 @default.
- W4313448102 cites W3203469477 @default.
- W4313448102 cites W3207507297 @default.
- W4313448102 cites W3210048346 @default.
- W4313448102 cites W4220730783 @default.
- W4313448102 doi "https://doi.org/10.1103/prxquantum.3.040331" @default.
- W4313448102 hasPublicationYear "2022" @default.
- W4313448102 type Work @default.
- W4313448102 citedByCount "4" @default.
- W4313448102 countsByYear W43134481022023 @default.
- W4313448102 crossrefType "journal-article" @default.
- W4313448102 hasAuthorship W4313448102A5015175312 @default.
- W4313448102 hasAuthorship W4313448102A5029275455 @default.
- W4313448102 hasAuthorship W4313448102A5087313169 @default.
- W4313448102 hasBestOaLocation W43134481021 @default.
- W4313448102 hasConcept C104317684 @default.
- W4313448102 hasConcept C118615104 @default.
- W4313448102 hasConcept C121332964 @default.
- W4313448102 hasConcept C124952713 @default.
- W4313448102 hasConcept C136119220 @default.