Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313448540> ?p ?o ?g. }
- W4313448540 endingPage "103402" @default.
- W4313448540 startingPage "103402" @default.
- W4313448540 abstract "In this paper, an approximate analytical technique is developed for determining the non-stationary response amplitude probability density function (PDF) of nonlinear/hysteretic oscillators endowed with fractional element and subjected to evolutionary excitations. This is achieved by a novel formulation of the Path Integral (PI) approach. Specifically, a stochastic averaging/linearization treatment of the original fractional order governing equation of motion yields a first-order stochastic differential equation (SDE) for the oscillator response amplitude. Associated with this first-order SDE is the Chapman–Kolmogorov (CK) equation governing the evolution in time of the non-stationary response amplitude PDF. Next, the PI technique is employed, which is based on a discretized version of the CK equation solved in short time steps. This is done relying on the Laplace’s method of integration which yields an approximate analytical solution of the integral involved in the CK equation. In this manner, the repetitive integrations generally required in the classical numerical implementation of the procedure are avoided. Thus, the non-stationary response amplitude PDF is approximately determined in closed-form in a computationally efficient manner. Notably, the technique can also account for arbitrary excitation evolutionary power spectrum forms, even of the non-separable kind. Applications to oscillators with Van der Pol and Duffing type nonlinear restoring force models, and Preisach hysteretic models, are presented. Appropriate comparisons with Monte Carlo simulation data are shown, demonstrating the efficiency and accuracy of the proposed approach." @default.
- W4313448540 created "2023-01-06" @default.
- W4313448540 creator A5012993851 @default.
- W4313448540 date "2023-01-01" @default.
- W4313448540 modified "2023-10-01" @default.
- W4313448540 title "Response of nonlinear oscillators with fractional derivative elements under evolutionary stochastic excitations: A Path Integral approach based on Laplace’s method of integration" @default.
- W4313448540 cites W1965720084 @default.
- W4313448540 cites W1967101443 @default.
- W4313448540 cites W1967149948 @default.
- W4313448540 cites W1973228108 @default.
- W4313448540 cites W1973944297 @default.
- W4313448540 cites W1976035664 @default.
- W4313448540 cites W1978113717 @default.
- W4313448540 cites W1978235180 @default.
- W4313448540 cites W1980759099 @default.
- W4313448540 cites W2013368583 @default.
- W4313448540 cites W2021874860 @default.
- W4313448540 cites W2023258736 @default.
- W4313448540 cites W2024914221 @default.
- W4313448540 cites W2034271742 @default.
- W4313448540 cites W2036728497 @default.
- W4313448540 cites W2051988367 @default.
- W4313448540 cites W2052071371 @default.
- W4313448540 cites W2065653164 @default.
- W4313448540 cites W2068331211 @default.
- W4313448540 cites W2070261925 @default.
- W4313448540 cites W2080296395 @default.
- W4313448540 cites W2087703210 @default.
- W4313448540 cites W2185590141 @default.
- W4313448540 cites W2231239123 @default.
- W4313448540 cites W2319631352 @default.
- W4313448540 cites W2415091556 @default.
- W4313448540 cites W2496828793 @default.
- W4313448540 cites W2514813540 @default.
- W4313448540 cites W2598386631 @default.
- W4313448540 cites W2766197584 @default.
- W4313448540 cites W2945677762 @default.
- W4313448540 cites W2958845028 @default.
- W4313448540 cites W3186918543 @default.
- W4313448540 doi "https://doi.org/10.1016/j.probengmech.2022.103402" @default.
- W4313448540 hasPublicationYear "2023" @default.
- W4313448540 type Work @default.
- W4313448540 citedByCount "1" @default.
- W4313448540 countsByYear W43134485402023 @default.
- W4313448540 crossrefType "journal-article" @default.
- W4313448540 hasAuthorship W4313448540A5012993851 @default.
- W4313448540 hasConcept C105795698 @default.
- W4313448540 hasConcept C121332964 @default.
- W4313448540 hasConcept C127349201 @default.
- W4313448540 hasConcept C132323500 @default.
- W4313448540 hasConcept C134306372 @default.
- W4313448540 hasConcept C154018700 @default.
- W4313448540 hasConcept C154249771 @default.
- W4313448540 hasConcept C158622935 @default.
- W4313448540 hasConcept C175853643 @default.
- W4313448540 hasConcept C180205008 @default.
- W4313448540 hasConcept C19499675 @default.
- W4313448540 hasConcept C197055811 @default.
- W4313448540 hasConcept C28826006 @default.
- W4313448540 hasConcept C33923547 @default.
- W4313448540 hasConcept C62520636 @default.
- W4313448540 hasConcept C73000952 @default.
- W4313448540 hasConcept C74650414 @default.
- W4313448540 hasConcept C84114770 @default.
- W4313448540 hasConcept C97937538 @default.
- W4313448540 hasConceptScore W4313448540C105795698 @default.
- W4313448540 hasConceptScore W4313448540C121332964 @default.
- W4313448540 hasConceptScore W4313448540C127349201 @default.
- W4313448540 hasConceptScore W4313448540C132323500 @default.
- W4313448540 hasConceptScore W4313448540C134306372 @default.
- W4313448540 hasConceptScore W4313448540C154018700 @default.
- W4313448540 hasConceptScore W4313448540C154249771 @default.
- W4313448540 hasConceptScore W4313448540C158622935 @default.
- W4313448540 hasConceptScore W4313448540C175853643 @default.
- W4313448540 hasConceptScore W4313448540C180205008 @default.
- W4313448540 hasConceptScore W4313448540C19499675 @default.
- W4313448540 hasConceptScore W4313448540C197055811 @default.
- W4313448540 hasConceptScore W4313448540C28826006 @default.
- W4313448540 hasConceptScore W4313448540C33923547 @default.
- W4313448540 hasConceptScore W4313448540C62520636 @default.
- W4313448540 hasConceptScore W4313448540C73000952 @default.
- W4313448540 hasConceptScore W4313448540C74650414 @default.
- W4313448540 hasConceptScore W4313448540C84114770 @default.
- W4313448540 hasConceptScore W4313448540C97937538 @default.
- W4313448540 hasLocation W43134485401 @default.
- W4313448540 hasOpenAccess W4313448540 @default.
- W4313448540 hasPrimaryLocation W43134485401 @default.
- W4313448540 hasRelatedWork W116920259 @default.
- W4313448540 hasRelatedWork W1987186050 @default.
- W4313448540 hasRelatedWork W1992244398 @default.
- W4313448540 hasRelatedWork W2055580247 @default.
- W4313448540 hasRelatedWork W2100207774 @default.
- W4313448540 hasRelatedWork W2329552765 @default.
- W4313448540 hasRelatedWork W2373890118 @default.
- W4313448540 hasRelatedWork W2913990906 @default.
- W4313448540 hasRelatedWork W3123568166 @default.
- W4313448540 hasRelatedWork W3166234201 @default.
- W4313448540 hasVolume "71" @default.