Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313448635> ?p ?o ?g. }
- W4313448635 endingPage "106471" @default.
- W4313448635 startingPage "106471" @default.
- W4313448635 abstract "With the development of bio-medical big data, the prediction of protein-protein interactions (PPIs) with the help of deep learning (DL) has attracted much attention for the study of intermolecular mechanism, drug design, human disease treatment. Given that the experiment-based methods can be difficult, reliable and DL-based approaches are needed. In this paper, we develop the EResCNN, an effective predictor to predict PPIs based on ensemble residual convolutional neural network. First, the fused feature representation is captured by concatenating the vectors obtained via pseudo amino acid composition (PseAAC), auto covariance descriptor (AC), pseudo position-specific scoring matrix (PsePSSM), encoding based on grouped weight (EBGW), multivariate mutual information (MMI) and conjoint triad (CT). Then the high-level information can be obtained using the convolution and pooling of the residual convolutional neural network (RCNN) via layer-by-layer learning. At last, we ensemble RCNN, XGBoost, random forest, LightGBM and extremely randomized trees to build the EResCNN model. The predictive results indicate that EResCNN achieves better performance with the ACC values of 95.34%, 87.89% and 98.61% on S. cerevisiae, H. pylori and Human-Y. pestis datasets, respectively. We also apply EResCNN to the datasets of H. sapiens, M. musculus, C. elegans and E. coli for cross-species prediction. Especially, we find EResCNN can infer significant PPIs network on one-core network, Wnt-related signal pathway network, cancer-specific network and multi-core network, which could provide some references for signal pathway research, disease-related gene mining, and interaction network topology." @default.
- W4313448635 created "2023-01-06" @default.
- W4313448635 creator A5016498015 @default.
- W4313448635 creator A5028555343 @default.
- W4313448635 creator A5055401422 @default.
- W4313448635 creator A5064548129 @default.
- W4313448635 creator A5075590567 @default.
- W4313448635 creator A5085122440 @default.
- W4313448635 date "2023-01-01" @default.
- W4313448635 modified "2023-10-14" @default.
- W4313448635 title "Prediction of protein-protein interactions based on ensemble residual convolutional neural network" @default.
- W4313448635 cites W1678356000 @default.
- W4313448635 cites W1817561967 @default.
- W4313448635 cites W1886978693 @default.
- W4313448635 cites W1918372212 @default.
- W4313448635 cites W1926568554 @default.
- W4313448635 cites W1963916671 @default.
- W4313448635 cites W1965008649 @default.
- W4313448635 cites W1982267716 @default.
- W4313448635 cites W1994803330 @default.
- W4313448635 cites W2000371303 @default.
- W4313448635 cites W2050375472 @default.
- W4313448635 cites W2064675550 @default.
- W4313448635 cites W2078162414 @default.
- W4313448635 cites W2080922998 @default.
- W4313448635 cites W2100495367 @default.
- W4313448635 cites W2101181377 @default.
- W4313448635 cites W2108211735 @default.
- W4313448635 cites W2119583098 @default.
- W4313448635 cites W2128276810 @default.
- W4313448635 cites W2132582966 @default.
- W4313448635 cites W2145957695 @default.
- W4313448635 cites W2150452800 @default.
- W4313448635 cites W2152705149 @default.
- W4313448635 cites W2156269526 @default.
- W4313448635 cites W2157142295 @default.
- W4313448635 cites W2162392441 @default.
- W4313448635 cites W2341018731 @default.
- W4313448635 cites W2508457857 @default.
- W4313448635 cites W2524367868 @default.
- W4313448635 cites W2616246685 @default.
- W4313448635 cites W2618530766 @default.
- W4313448635 cites W2800686208 @default.
- W4313448635 cites W2804331675 @default.
- W4313448635 cites W2890911678 @default.
- W4313448635 cites W2897573317 @default.
- W4313448635 cites W2901086483 @default.
- W4313448635 cites W2904726360 @default.
- W4313448635 cites W2906922093 @default.
- W4313448635 cites W2907063321 @default.
- W4313448635 cites W2907485791 @default.
- W4313448635 cites W2936781144 @default.
- W4313448635 cites W2950389803 @default.
- W4313448635 cites W2950742983 @default.
- W4313448635 cites W2957436444 @default.
- W4313448635 cites W2980057552 @default.
- W4313448635 cites W2998220730 @default.
- W4313448635 cites W3010877467 @default.
- W4313448635 cites W3043299403 @default.
- W4313448635 cites W3045012301 @default.
- W4313448635 cites W3139455212 @default.
- W4313448635 cites W3172441129 @default.
- W4313448635 cites W3188076481 @default.
- W4313448635 cites W3191089618 @default.
- W4313448635 cites W4200171665 @default.
- W4313448635 cites W4211063068 @default.
- W4313448635 cites W4220660070 @default.
- W4313448635 cites W4225795380 @default.
- W4313448635 cites W4239510810 @default.
- W4313448635 doi "https://doi.org/10.1016/j.compbiomed.2022.106471" @default.
- W4313448635 hasPublicationYear "2023" @default.
- W4313448635 type Work @default.
- W4313448635 citedByCount "2" @default.
- W4313448635 countsByYear W43134486352023 @default.
- W4313448635 crossrefType "journal-article" @default.
- W4313448635 hasAuthorship W4313448635A5016498015 @default.
- W4313448635 hasAuthorship W4313448635A5028555343 @default.
- W4313448635 hasAuthorship W4313448635A5055401422 @default.
- W4313448635 hasAuthorship W4313448635A5064548129 @default.
- W4313448635 hasAuthorship W4313448635A5075590567 @default.
- W4313448635 hasAuthorship W4313448635A5085122440 @default.
- W4313448635 hasConcept C119857082 @default.
- W4313448635 hasConcept C124101348 @default.
- W4313448635 hasConcept C153180895 @default.
- W4313448635 hasConcept C154945302 @default.
- W4313448635 hasConcept C169258074 @default.
- W4313448635 hasConcept C41008148 @default.
- W4313448635 hasConcept C70437156 @default.
- W4313448635 hasConcept C81363708 @default.
- W4313448635 hasConceptScore W4313448635C119857082 @default.
- W4313448635 hasConceptScore W4313448635C124101348 @default.
- W4313448635 hasConceptScore W4313448635C153180895 @default.
- W4313448635 hasConceptScore W4313448635C154945302 @default.
- W4313448635 hasConceptScore W4313448635C169258074 @default.
- W4313448635 hasConceptScore W4313448635C41008148 @default.
- W4313448635 hasConceptScore W4313448635C70437156 @default.
- W4313448635 hasConceptScore W4313448635C81363708 @default.
- W4313448635 hasFunder F4320321001 @default.