Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313449178> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4313449178 endingPage "107554" @default.
- W4313449178 startingPage "107554" @default.
- W4313449178 abstract "Lack of generalization in plant-detection models is one of the main challenges preventing the realization of autonomous weed-control systems. This paper investigates the effect of the train and test dataset distribution on the generalization error of a plant-detection model and uses incremental training to mitigate the said error. In this paper, we use the YOLOv3 object detector as plant-detection model. To train the model and test its generalization properties we used a broad dataset, consisting of 25 sub-datasets, sampled from multiple different geographic areas, soil types, cultivation conditions, containing variation in weeds, background vegetation, camera quality and variations in illumination. Using this dataset we evaluated the generalization error of a plant-detection model, assessed the effect of sampling training images from multiple arable fields on the generalization of our plant-detection model, we investigated the relation between the number of training images and the generalization of the plant-detection model and we applied incremental training to mitigate the generalization error of our plant-detection model on new arable fields. It was found that the average generalization error of our plant-detection model was 0.06 mAP. Increasing the number of sub-datasets for training, while keeping the total number of training images constant, increased the variation covered by the training set and improved the generalization of our plant-detection model. Adding more training images sampled from the same datasets increased the generalization further. However, this effect is limited and only holds when the new images cover new variation. Naively adding more images does not prepare the model for specific scenarios outside the training distribution. Using incremental training the model can be adapted to such scenarios and the generalization error can be mitigated. Depending on the discrepancy between the training set and the new field, finetuning on as little as 25 images can already mitigate the generalization error." @default.
- W4313449178 created "2023-01-06" @default.
- W4313449178 creator A5021351259 @default.
- W4313449178 creator A5058282212 @default.
- W4313449178 creator A5063259309 @default.
- W4313449178 date "2023-01-01" @default.
- W4313449178 modified "2023-09-26" @default.
- W4313449178 title "Improved generalization of a plant-detection model for precision weed control" @default.
- W4313449178 cites W1861492603 @default.
- W4313449178 cites W1964801884 @default.
- W4313449178 cites W1994529053 @default.
- W4313449178 cites W2053284518 @default.
- W4313449178 cites W2090743741 @default.
- W4313449178 cites W2098402059 @default.
- W4313449178 cites W2520364485 @default.
- W4313449178 cites W2752192487 @default.
- W4313449178 cites W2773650303 @default.
- W4313449178 cites W2789255992 @default.
- W4313449178 cites W2887344700 @default.
- W4313449178 cites W2887902433 @default.
- W4313449178 cites W2936503027 @default.
- W4313449178 cites W3004192481 @default.
- W4313449178 cites W3043373364 @default.
- W4313449178 cites W3043995050 @default.
- W4313449178 cites W3111839927 @default.
- W4313449178 cites W4220700539 @default.
- W4313449178 cites W639708223 @default.
- W4313449178 cites W93260404 @default.
- W4313449178 doi "https://doi.org/10.1016/j.compag.2022.107554" @default.
- W4313449178 hasPublicationYear "2023" @default.
- W4313449178 type Work @default.
- W4313449178 citedByCount "0" @default.
- W4313449178 crossrefType "journal-article" @default.
- W4313449178 hasAuthorship W4313449178A5021351259 @default.
- W4313449178 hasAuthorship W4313449178A5058282212 @default.
- W4313449178 hasAuthorship W4313449178A5063259309 @default.
- W4313449178 hasBestOaLocation W43134491781 @default.
- W4313449178 hasConcept C134306372 @default.
- W4313449178 hasConcept C153180895 @default.
- W4313449178 hasConcept C154945302 @default.
- W4313449178 hasConcept C177148314 @default.
- W4313449178 hasConcept C31972630 @default.
- W4313449178 hasConcept C33923547 @default.
- W4313449178 hasConcept C41008148 @default.
- W4313449178 hasConceptScore W4313449178C134306372 @default.
- W4313449178 hasConceptScore W4313449178C153180895 @default.
- W4313449178 hasConceptScore W4313449178C154945302 @default.
- W4313449178 hasConceptScore W4313449178C177148314 @default.
- W4313449178 hasConceptScore W4313449178C31972630 @default.
- W4313449178 hasConceptScore W4313449178C33923547 @default.
- W4313449178 hasConceptScore W4313449178C41008148 @default.
- W4313449178 hasLocation W43134491781 @default.
- W4313449178 hasOpenAccess W4313449178 @default.
- W4313449178 hasPrimaryLocation W43134491781 @default.
- W4313449178 hasRelatedWork W1891287906 @default.
- W4313449178 hasRelatedWork W1969923398 @default.
- W4313449178 hasRelatedWork W1971753667 @default.
- W4313449178 hasRelatedWork W2036807459 @default.
- W4313449178 hasRelatedWork W2166024367 @default.
- W4313449178 hasRelatedWork W2229312674 @default.
- W4313449178 hasRelatedWork W2755342338 @default.
- W4313449178 hasRelatedWork W2772917594 @default.
- W4313449178 hasRelatedWork W2775347418 @default.
- W4313449178 hasRelatedWork W3116076068 @default.
- W4313449178 hasVolume "204" @default.
- W4313449178 isParatext "false" @default.
- W4313449178 isRetracted "false" @default.
- W4313449178 workType "article" @default.