Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313449251> ?p ?o ?g. }
- W4313449251 abstract "Abstract Artificial intelligence (AI) is empowering personalized online news delivery to accommodate people’s information needs and combat information overload. However, AI models learned from user data are inheriting and amplifying some underlying human prejudice such as the sentiment bias of news reading, which may lead to potential negative societal effects and ethical concerns. Here, substantial evidence shows that AI is manipulating the sentiment orientation of news displayed to users by promoting the presence chance of negative news, even if there is no human interference. To mitigate this manipulation, a sentiment-debiasing method based on a decomposed adversarial learning framework is proposed, which can reduce 97.3% of sentiment bias with only 2.9% accuracy sacrifice. Our work provides the potential in improving AI’s responsibility in many human-centered applications such as online journalism and information spread." @default.
- W4313449251 created "2023-01-06" @default.
- W4313449251 creator A5011604295 @default.
- W4313449251 creator A5016519620 @default.
- W4313449251 creator A5035067940 @default.
- W4313449251 creator A5076423724 @default.
- W4313449251 creator A5083181758 @default.
- W4313449251 creator A5091902436 @default.
- W4313449251 date "2022-12-20" @default.
- W4313449251 modified "2023-10-09" @default.
- W4313449251 title "Removing AI’s sentiment manipulation of personalized news delivery" @default.
- W4313449251 cites W1589747210 @default.
- W4313449251 cites W1968380849 @default.
- W4313449251 cites W2003684386 @default.
- W4313449251 cites W2011473256 @default.
- W4313449251 cites W202178741 @default.
- W4313449251 cites W2035625541 @default.
- W4313449251 cites W2041981868 @default.
- W4313449251 cites W2057006092 @default.
- W4313449251 cites W2099813784 @default.
- W4313449251 cites W2123427850 @default.
- W4313449251 cites W2134875419 @default.
- W4313449251 cites W2141534531 @default.
- W4313449251 cites W2146341589 @default.
- W4313449251 cites W2252009349 @default.
- W4313449251 cites W2274172111 @default.
- W4313449251 cites W2531099434 @default.
- W4313449251 cites W2564112458 @default.
- W4313449251 cites W2742272831 @default.
- W4313449251 cites W2792952009 @default.
- W4313449251 cites W2809628680 @default.
- W4313449251 cites W2883147591 @default.
- W4313449251 cites W2888034114 @default.
- W4313449251 cites W2896131989 @default.
- W4313449251 cites W2899787185 @default.
- W4313449251 cites W2919115771 @default.
- W4313449251 cites W2950416834 @default.
- W4313449251 cites W2950421571 @default.
- W4313449251 cites W2962990575 @default.
- W4313449251 cites W2963116854 @default.
- W4313449251 cites W2963869731 @default.
- W4313449251 cites W2963908320 @default.
- W4313449251 cites W2964536660 @default.
- W4313449251 cites W2965436471 @default.
- W4313449251 cites W2965874587 @default.
- W4313449251 cites W2970793364 @default.
- W4313449251 cites W2971737644 @default.
- W4313449251 cites W2976473317 @default.
- W4313449251 cites W2981869278 @default.
- W4313449251 cites W3000812661 @default.
- W4313449251 cites W3015622078 @default.
- W4313449251 cites W3032045136 @default.
- W4313449251 cites W3034449195 @default.
- W4313449251 cites W3034503922 @default.
- W4313449251 cites W3087185627 @default.
- W4313449251 cites W3102867977 @default.
- W4313449251 cites W3104758113 @default.
- W4313449251 cites W3111468671 @default.
- W4313449251 cites W3119774682 @default.
- W4313449251 cites W3156001311 @default.
- W4313449251 cites W3175660618 @default.
- W4313449251 cites W3208226268 @default.
- W4313449251 cites W4211058024 @default.
- W4313449251 cites W4213059804 @default.
- W4313449251 cites W4306317299 @default.
- W4313449251 cites W88302371 @default.
- W4313449251 doi "https://doi.org/10.1057/s41599-022-01473-1" @default.
- W4313449251 hasPublicationYear "2022" @default.
- W4313449251 type Work @default.
- W4313449251 citedByCount "1" @default.
- W4313449251 countsByYear W43134492512023 @default.
- W4313449251 crossrefType "journal-article" @default.
- W4313449251 hasAuthorship W4313449251A5011604295 @default.
- W4313449251 hasAuthorship W4313449251A5016519620 @default.
- W4313449251 hasAuthorship W4313449251A5035067940 @default.
- W4313449251 hasAuthorship W4313449251A5076423724 @default.
- W4313449251 hasAuthorship W4313449251A5083181758 @default.
- W4313449251 hasAuthorship W4313449251A5091902436 @default.
- W4313449251 hasBestOaLocation W43134492511 @default.
- W4313449251 hasConcept C107062074 @default.
- W4313449251 hasConcept C108827166 @default.
- W4313449251 hasConcept C136764020 @default.
- W4313449251 hasConcept C154945302 @default.
- W4313449251 hasConcept C15744967 @default.
- W4313449251 hasConcept C17744445 @default.
- W4313449251 hasConcept C186625053 @default.
- W4313449251 hasConcept C199539241 @default.
- W4313449251 hasConcept C2522767166 @default.
- W4313449251 hasConcept C2779458634 @default.
- W4313449251 hasConcept C37736160 @default.
- W4313449251 hasConcept C41008148 @default.
- W4313449251 hasConcept C554936623 @default.
- W4313449251 hasConcept C66402592 @default.
- W4313449251 hasConcept C77805123 @default.
- W4313449251 hasConceptScore W4313449251C107062074 @default.
- W4313449251 hasConceptScore W4313449251C108827166 @default.
- W4313449251 hasConceptScore W4313449251C136764020 @default.
- W4313449251 hasConceptScore W4313449251C154945302 @default.
- W4313449251 hasConceptScore W4313449251C15744967 @default.
- W4313449251 hasConceptScore W4313449251C17744445 @default.