Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313449259> ?p ?o ?g. }
- W4313449259 endingPage "135680" @default.
- W4313449259 startingPage "135680" @default.
- W4313449259 abstract "Accurate and effective forecasting of short-term global solar radiation is critical for the development of photovoltaic systems, particularly for integration into existing grid systems. However, its non-stationary characteristics caused by climatic factors make its estimation extremely challenging. In this regard, a newly designed learning technique for multi-hour global solar radiation forecasting is proposed based on a time-varying filter-empirical mode decomposition (TVF-EMD), feature selection, and extreme learning machine (ELM) as an essence regression. The proposed hybridization strategy consists of three main steps for understanding the fundamental behavioral aspects of hourly global solar radiation data. The first phase employs the TVF-EMD algorithm to deal with the variability of global solar radiation data by separating it into a series of more stable and constant subseries. Then, the feature selection step is employed to evaluate and identify distinctive features set from the whole decomposed subseries by means of the RReliefF algorithm. The selected feature sets are used to train and optimize our forecasting extreme learning machine model, then the tuned ELM model is used to assess the forecasting accuracy. The proposed TVF-EMD-RF-ELM model is evaluated and validated in different regions in Algeria with various climate conditions. The forecasting findings of the TVF-EMD algorithm demonstrate high accuracy compared to the recent version of empirical mode decomposition CEEMDAN. Overall forecasting periods, the TVF-EMD-RF-ELM model produces an error less than 8.3% in terms of normalized root mean square error nRMSE in all studied regions." @default.
- W4313449259 created "2023-01-06" @default.
- W4313449259 creator A5021166992 @default.
- W4313449259 creator A5023316240 @default.
- W4313449259 creator A5043103542 @default.
- W4313449259 creator A5043671261 @default.
- W4313449259 creator A5072169633 @default.
- W4313449259 creator A5082501783 @default.
- W4313449259 date "2023-01-01" @default.
- W4313449259 modified "2023-10-01" @default.
- W4313449259 title "Potential assessment of the TVF-EMD algorithm in forecasting hourly global solar radiation: Review and case studies" @default.
- W4313449259 cites W1895707564 @default.
- W4313449259 cites W1977318470 @default.
- W4313449259 cites W1987302169 @default.
- W4313449259 cites W2034654081 @default.
- W4313449259 cites W2056192250 @default.
- W4313449259 cites W2089487480 @default.
- W4313449259 cites W2101108516 @default.
- W4313449259 cites W2167101736 @default.
- W4313449259 cites W2200314393 @default.
- W4313449259 cites W2228799413 @default.
- W4313449259 cites W2247761358 @default.
- W4313449259 cites W2373556188 @default.
- W4313449259 cites W2470699557 @default.
- W4313449259 cites W2484979138 @default.
- W4313449259 cites W2550999023 @default.
- W4313449259 cites W2603478627 @default.
- W4313449259 cites W2743395569 @default.
- W4313449259 cites W2756625063 @default.
- W4313449259 cites W2785027006 @default.
- W4313449259 cites W2791043861 @default.
- W4313449259 cites W2807548466 @default.
- W4313449259 cites W2808150083 @default.
- W4313449259 cites W2886034547 @default.
- W4313449259 cites W2905012744 @default.
- W4313449259 cites W2912989635 @default.
- W4313449259 cites W2924408274 @default.
- W4313449259 cites W2964278775 @default.
- W4313449259 cites W2976437134 @default.
- W4313449259 cites W2982154805 @default.
- W4313449259 cites W2998772831 @default.
- W4313449259 cites W3004531838 @default.
- W4313449259 cites W3090232294 @default.
- W4313449259 cites W3091474373 @default.
- W4313449259 cites W3110443213 @default.
- W4313449259 cites W3123712479 @default.
- W4313449259 cites W3131183008 @default.
- W4313449259 cites W3135477757 @default.
- W4313449259 cites W3171346592 @default.
- W4313449259 cites W3190354123 @default.
- W4313449259 cites W3194092876 @default.
- W4313449259 cites W3203568950 @default.
- W4313449259 cites W3207286568 @default.
- W4313449259 doi "https://doi.org/10.1016/j.jclepro.2022.135680" @default.
- W4313449259 hasPublicationYear "2023" @default.
- W4313449259 type Work @default.
- W4313449259 citedByCount "6" @default.
- W4313449259 countsByYear W43134492592023 @default.
- W4313449259 crossrefType "journal-article" @default.
- W4313449259 hasAuthorship W4313449259A5021166992 @default.
- W4313449259 hasAuthorship W4313449259A5023316240 @default.
- W4313449259 hasAuthorship W4313449259A5043103542 @default.
- W4313449259 hasAuthorship W4313449259A5043671261 @default.
- W4313449259 hasAuthorship W4313449259A5072169633 @default.
- W4313449259 hasAuthorship W4313449259A5082501783 @default.
- W4313449259 hasConcept C104114177 @default.
- W4313449259 hasConcept C105795698 @default.
- W4313449259 hasConcept C106131492 @default.
- W4313449259 hasConcept C111919701 @default.
- W4313449259 hasConcept C11413529 @default.
- W4313449259 hasConcept C119857082 @default.
- W4313449259 hasConcept C124101348 @default.
- W4313449259 hasConcept C137800194 @default.
- W4313449259 hasConcept C138885662 @default.
- W4313449259 hasConcept C139945424 @default.
- W4313449259 hasConcept C148483581 @default.
- W4313449259 hasConcept C154945302 @default.
- W4313449259 hasConcept C25570617 @default.
- W4313449259 hasConcept C2776401178 @default.
- W4313449259 hasConcept C2780150128 @default.
- W4313449259 hasConcept C31972630 @default.
- W4313449259 hasConcept C33923547 @default.
- W4313449259 hasConcept C41008148 @default.
- W4313449259 hasConcept C41895202 @default.
- W4313449259 hasConcept C48677424 @default.
- W4313449259 hasConcept C50644808 @default.
- W4313449259 hasConceptScore W4313449259C104114177 @default.
- W4313449259 hasConceptScore W4313449259C105795698 @default.
- W4313449259 hasConceptScore W4313449259C106131492 @default.
- W4313449259 hasConceptScore W4313449259C111919701 @default.
- W4313449259 hasConceptScore W4313449259C11413529 @default.
- W4313449259 hasConceptScore W4313449259C119857082 @default.
- W4313449259 hasConceptScore W4313449259C124101348 @default.
- W4313449259 hasConceptScore W4313449259C137800194 @default.
- W4313449259 hasConceptScore W4313449259C138885662 @default.
- W4313449259 hasConceptScore W4313449259C139945424 @default.
- W4313449259 hasConceptScore W4313449259C148483581 @default.
- W4313449259 hasConceptScore W4313449259C154945302 @default.