Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313449309> ?p ?o ?g. }
- W4313449309 endingPage "4777" @default.
- W4313449309 startingPage "4759" @default.
- W4313449309 abstract "The task of cell segmentation in microscope images is difficult and popular. In recent years, deep learning-based techniques have made incredible progress in medical and microscopy image segmentation applications. In this paper, we propose a novel deep learning approach called Residual-Atrous MultiResUnet with Channel Attention Mechanism (RAMRU-CAM) for cell segmentation, which combines MultiResUnet architecture with Channel Attention Mechanism (CAM) and Residual-Atrous connections. The Residual-Atrous path mitigates the semantic gap between the encoder and decoder stages and manages the spatial dimension of feature maps. Furthermore, the Channel Attention Mechanism (CAM) blocks are used in the decoder stages to better maintain the spatial details before concatenating the feature maps from the encoder phases to the decoder phases. We evaluated our proposed model on the PhC-C2DH-U373 and Fluo-N2DH-GOWT1 datasets. The experimental results show that our proposed model outperforms recent variants of the U-Net model and the state-of-the-art approaches. We have demonstrated how our model can segment cells precisely while using fewer parameters and low computational complexity." @default.
- W4313449309 created "2023-01-06" @default.
- W4313449309 creator A5034615239 @default.
- W4313449309 creator A5036380359 @default.
- W4313449309 creator A5066176354 @default.
- W4313449309 date "2023-03-09" @default.
- W4313449309 modified "2023-09-26" @default.
- W4313449309 title "RAMRU-CAM: Residual-Atrous MultiResUnet with Channel Attention Mechanism for cell segmentation" @default.
- W4313449309 cites W1901129140 @default.
- W4313449309 cites W1968615915 @default.
- W4313449309 cites W1970120446 @default.
- W4313449309 cites W2112796928 @default.
- W4313449309 cites W2116719896 @default.
- W4313449309 cites W2279752654 @default.
- W4313449309 cites W2592929672 @default.
- W4313449309 cites W2600966010 @default.
- W4313449309 cites W2758694956 @default.
- W4313449309 cites W2768673271 @default.
- W4313449309 cites W2884436604 @default.
- W4313449309 cites W2914272101 @default.
- W4313449309 cites W2914959431 @default.
- W4313449309 cites W2928133111 @default.
- W4313449309 cites W2947160815 @default.
- W4313449309 cites W2955521425 @default.
- W4313449309 cites W2963420686 @default.
- W4313449309 cites W2978457402 @default.
- W4313449309 cites W2979773192 @default.
- W4313449309 cites W2981258781 @default.
- W4313449309 cites W2997994114 @default.
- W4313449309 cites W2998784361 @default.
- W4313449309 cites W2999602293 @default.
- W4313449309 cites W3013630101 @default.
- W4313449309 cites W3016990308 @default.
- W4313449309 cites W3080658161 @default.
- W4313449309 cites W3084726437 @default.
- W4313449309 cites W3087353686 @default.
- W4313449309 cites W3094059395 @default.
- W4313449309 cites W3124566001 @default.
- W4313449309 cites W3139295695 @default.
- W4313449309 cites W3161300377 @default.
- W4313449309 cites W3175204909 @default.
- W4313449309 cites W3179793716 @default.
- W4313449309 cites W3184189121 @default.
- W4313449309 cites W3196811303 @default.
- W4313449309 cites W3197440202 @default.
- W4313449309 cites W4210612978 @default.
- W4313449309 cites W4283688005 @default.
- W4313449309 doi "https://doi.org/10.3233/jifs-222631" @default.
- W4313449309 hasPublicationYear "2023" @default.
- W4313449309 type Work @default.
- W4313449309 citedByCount "0" @default.
- W4313449309 crossrefType "journal-article" @default.
- W4313449309 hasAuthorship W4313449309A5034615239 @default.
- W4313449309 hasAuthorship W4313449309A5036380359 @default.
- W4313449309 hasAuthorship W4313449309A5066176354 @default.
- W4313449309 hasConcept C108583219 @default.
- W4313449309 hasConcept C111919701 @default.
- W4313449309 hasConcept C11413529 @default.
- W4313449309 hasConcept C118505674 @default.
- W4313449309 hasConcept C127162648 @default.
- W4313449309 hasConcept C138885662 @default.
- W4313449309 hasConcept C153180895 @default.
- W4313449309 hasConcept C154945302 @default.
- W4313449309 hasConcept C155512373 @default.
- W4313449309 hasConcept C2776401178 @default.
- W4313449309 hasConcept C31258907 @default.
- W4313449309 hasConcept C31972630 @default.
- W4313449309 hasConcept C41008148 @default.
- W4313449309 hasConcept C41895202 @default.
- W4313449309 hasConcept C89600930 @default.
- W4313449309 hasConceptScore W4313449309C108583219 @default.
- W4313449309 hasConceptScore W4313449309C111919701 @default.
- W4313449309 hasConceptScore W4313449309C11413529 @default.
- W4313449309 hasConceptScore W4313449309C118505674 @default.
- W4313449309 hasConceptScore W4313449309C127162648 @default.
- W4313449309 hasConceptScore W4313449309C138885662 @default.
- W4313449309 hasConceptScore W4313449309C153180895 @default.
- W4313449309 hasConceptScore W4313449309C154945302 @default.
- W4313449309 hasConceptScore W4313449309C155512373 @default.
- W4313449309 hasConceptScore W4313449309C2776401178 @default.
- W4313449309 hasConceptScore W4313449309C31258907 @default.
- W4313449309 hasConceptScore W4313449309C31972630 @default.
- W4313449309 hasConceptScore W4313449309C41008148 @default.
- W4313449309 hasConceptScore W4313449309C41895202 @default.
- W4313449309 hasConceptScore W4313449309C89600930 @default.
- W4313449309 hasIssue "3" @default.
- W4313449309 hasLocation W43134493091 @default.
- W4313449309 hasOpenAccess W4313449309 @default.
- W4313449309 hasPrimaryLocation W43134493091 @default.
- W4313449309 hasRelatedWork W1669643531 @default.
- W4313449309 hasRelatedWork W2005437358 @default.
- W4313449309 hasRelatedWork W2008656436 @default.
- W4313449309 hasRelatedWork W2039154422 @default.
- W4313449309 hasRelatedWork W2122581818 @default.
- W4313449309 hasRelatedWork W2517104666 @default.
- W4313449309 hasRelatedWork W2790662084 @default.
- W4313449309 hasRelatedWork W2948658236 @default.
- W4313449309 hasRelatedWork W4293211451 @default.