Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313451211> ?p ?o ?g. }
- W4313451211 abstract "Randomized controlled trials are considered the golden standard for estimating treatment effect but are costly to perform and not always possible. Observational data, although readily available, is sensitive to biases such as confounding by indication. Structure learning algorithms for Bayesian Networks (BNs) can be used to discover the underlying model from data. This enables identification of confounders through graph analysis, although the model might contain noncausal edges. We propose using a blacklist to aid structure learning in finding causal relationships. This is illustrated by an analysis into the effect of active treatment (v observation) in localized prostate cancer.In total, 4,121 prostate cancer records were obtained from the Netherlands Cancer Registry. Subsequently, we developed a (causal) BN using structure learning while precluding noncausal relations. Additionally, we created several Cox proportional hazards models, each correcting for a different set of potential confounders (including propensity scores). Model predictions for overall survival were compared with expected survival on the basis of the general population using data from Statistics Netherlands (Centraal Bureau voor de Statistiek).Structure learning precluding noncausal relations resulted in a causal graph but did not identify significant edges toward treatment; they were added manually. Graph analysis identified year of diagnosis and age as confounders. The BN predicted a treatment effect of 1 percentage point at 10 years. Chi-squared analysis found significant associations between year of diagnosis, age, stage, and treatment. Propensity score correction was successful. Adjusted Cox models predicted significant treatment effect around 3 percentage points at 10 years.A blacklist in conjunction with structure learning can result in a causal BN that can be used for confounder identification. Treatment effect found here is close to the 5 percentage point found in the literature." @default.
- W4313451211 created "2023-01-06" @default.
- W4313451211 creator A5005366030 @default.
- W4313451211 creator A5013513157 @default.
- W4313451211 creator A5015152879 @default.
- W4313451211 creator A5045771785 @default.
- W4313451211 creator A5056019735 @default.
- W4313451211 creator A5056442086 @default.
- W4313451211 creator A5058533373 @default.
- W4313451211 creator A5066831195 @default.
- W4313451211 creator A5071145173 @default.
- W4313451211 creator A5078134772 @default.
- W4313451211 date "2023-01-01" @default.
- W4313451211 modified "2023-10-05" @default.
- W4313451211 title "Identifying Confounders Using Bayesian Networks and Estimating Treatment Effect in Prostate Cancer With Observational Data" @default.
- W4313451211 cites W1975780287 @default.
- W4313451211 cites W1996351770 @default.
- W4313451211 cites W2004722883 @default.
- W4313451211 cites W2025309870 @default.
- W4313451211 cites W2031048427 @default.
- W4313451211 cites W2049910836 @default.
- W4313451211 cites W2052806549 @default.
- W4313451211 cites W2062225986 @default.
- W4313451211 cites W2076983043 @default.
- W4313451211 cites W2100097418 @default.
- W4313451211 cites W2130635109 @default.
- W4313451211 cites W2143891888 @default.
- W4313451211 cites W2165190832 @default.
- W4313451211 cites W2345126895 @default.
- W4313451211 cites W2523396458 @default.
- W4313451211 cites W2581094912 @default.
- W4313451211 cites W2815697307 @default.
- W4313451211 cites W3046473363 @default.
- W4313451211 cites W3095558972 @default.
- W4313451211 cites W4233182856 @default.
- W4313451211 doi "https://doi.org/10.1200/cci.22.00080" @default.
- W4313451211 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36595730" @default.
- W4313451211 hasPublicationYear "2023" @default.
- W4313451211 type Work @default.
- W4313451211 citedByCount "2" @default.
- W4313451211 countsByYear W43134512112023 @default.
- W4313451211 crossrefType "journal-article" @default.
- W4313451211 hasAuthorship W4313451211A5005366030 @default.
- W4313451211 hasAuthorship W4313451211A5013513157 @default.
- W4313451211 hasAuthorship W4313451211A5015152879 @default.
- W4313451211 hasAuthorship W4313451211A5045771785 @default.
- W4313451211 hasAuthorship W4313451211A5056019735 @default.
- W4313451211 hasAuthorship W4313451211A5056442086 @default.
- W4313451211 hasAuthorship W4313451211A5058533373 @default.
- W4313451211 hasAuthorship W4313451211A5066831195 @default.
- W4313451211 hasAuthorship W4313451211A5071145173 @default.
- W4313451211 hasAuthorship W4313451211A5078134772 @default.
- W4313451211 hasBestOaLocation W43134512111 @default.
- W4313451211 hasConcept C105795698 @default.
- W4313451211 hasConcept C107673813 @default.
- W4313451211 hasConcept C121608353 @default.
- W4313451211 hasConcept C126322002 @default.
- W4313451211 hasConcept C149782125 @default.
- W4313451211 hasConcept C154945302 @default.
- W4313451211 hasConcept C158600405 @default.
- W4313451211 hasConcept C17923572 @default.
- W4313451211 hasConcept C23131810 @default.
- W4313451211 hasConcept C2780192828 @default.
- W4313451211 hasConcept C2908647359 @default.
- W4313451211 hasConcept C33923547 @default.
- W4313451211 hasConcept C41008148 @default.
- W4313451211 hasConcept C50382708 @default.
- W4313451211 hasConcept C71924100 @default.
- W4313451211 hasConcept C77350462 @default.
- W4313451211 hasConcept C99454951 @default.
- W4313451211 hasConceptScore W4313451211C105795698 @default.
- W4313451211 hasConceptScore W4313451211C107673813 @default.
- W4313451211 hasConceptScore W4313451211C121608353 @default.
- W4313451211 hasConceptScore W4313451211C126322002 @default.
- W4313451211 hasConceptScore W4313451211C149782125 @default.
- W4313451211 hasConceptScore W4313451211C154945302 @default.
- W4313451211 hasConceptScore W4313451211C158600405 @default.
- W4313451211 hasConceptScore W4313451211C17923572 @default.
- W4313451211 hasConceptScore W4313451211C23131810 @default.
- W4313451211 hasConceptScore W4313451211C2780192828 @default.
- W4313451211 hasConceptScore W4313451211C2908647359 @default.
- W4313451211 hasConceptScore W4313451211C33923547 @default.
- W4313451211 hasConceptScore W4313451211C41008148 @default.
- W4313451211 hasConceptScore W4313451211C50382708 @default.
- W4313451211 hasConceptScore W4313451211C71924100 @default.
- W4313451211 hasConceptScore W4313451211C77350462 @default.
- W4313451211 hasConceptScore W4313451211C99454951 @default.
- W4313451211 hasIssue "7" @default.
- W4313451211 hasLocation W43134512111 @default.
- W4313451211 hasLocation W43134512112 @default.
- W4313451211 hasOpenAccess W4313451211 @default.
- W4313451211 hasPrimaryLocation W43134512111 @default.
- W4313451211 hasRelatedWork W1989803330 @default.
- W4313451211 hasRelatedWork W2346844326 @default.
- W4313451211 hasRelatedWork W2540939911 @default.
- W4313451211 hasRelatedWork W3208489104 @default.
- W4313451211 hasRelatedWork W4221166320 @default.
- W4313451211 hasRelatedWork W4281286690 @default.
- W4313451211 hasRelatedWork W4286896224 @default.
- W4313451211 hasRelatedWork W4296012301 @default.