Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313451295> ?p ?o ?g. }
- W4313451295 abstract "PURPOSE There is limited knowledge of the prediction of 2-year cancer-specific survival (CSS) in the head and neck cancer (HNC) population. The aim of this study is to develop and validate machine learning models and a nomogram for the prediction of 2-year CSS in patients with HNC using real-world data collected by major teaching and tertiary referral hospitals in New South Wales (NSW), Australia. MATERIALS AND METHODS Data collected in oncology information systems at multiple NSW Cancer Centres were extracted for 2,953 eligible adults diagnosed between 2000 and 2017 with squamous cell carcinoma of the head and neck. Death data were sourced from the National Death Index using record linkage. Machine learning and Cox regression/nomogram models were developed and internally validated in Python and R, respectively. RESULTS Machine learning models demonstrated highest performance (C-index) in the larynx and nasopharynx cohorts (0.82), followed by the oropharynx (0.79) and the hypopharynx and oral cavity cohorts (0.73). In the whole HNC population, C-indexes of 0.79 and 0.70 and Brier scores of 0.10 and 0.27 were reported for the machine learning and nomogram model, respectively. Cox regression analysis identified age, T and N classification, and time-corrected biologic equivalent dose in two gray fractions as independent prognostic factors for 2-year CSS. N classification was the most important feature used for prediction in the machine learning model followed by age. CONCLUSION Machine learning and nomogram analysis predicted 2-year CSS with high performance using routinely collected and complete clinical information extracted from oncology information systems. These models function as visual decision-making tools to guide radiotherapy treatment decisions and provide insight into the prediction of survival outcomes in patients with HNC." @default.
- W4313451295 created "2023-01-06" @default.
- W4313451295 creator A5033182898 @default.
- W4313451295 creator A5051744803 @default.
- W4313451295 creator A5078343718 @default.
- W4313451295 creator A5091605573 @default.
- W4313451295 date "2023-01-01" @default.
- W4313451295 modified "2023-09-27" @default.
- W4313451295 title "Machine Learning and Nomogram Prognostic Modeling for 2-Year Head and Neck Cancer–Specific Survival Using Electronic Health Record Data: A Multisite Study" @default.
- W4313451295 cites W1579311705 @default.
- W4313451295 cites W1966559889 @default.
- W4313451295 cites W1974492960 @default.
- W4313451295 cites W1978150342 @default.
- W4313451295 cites W1985213644 @default.
- W4313451295 cites W2019694480 @default.
- W4313451295 cites W2026821578 @default.
- W4313451295 cites W2027943554 @default.
- W4313451295 cites W2031579870 @default.
- W4313451295 cites W2061036339 @default.
- W4313451295 cites W2065150907 @default.
- W4313451295 cites W2066854306 @default.
- W4313451295 cites W2073241381 @default.
- W4313451295 cites W2080767065 @default.
- W4313451295 cites W2084139018 @default.
- W4313451295 cites W2091415498 @default.
- W4313451295 cites W2114041936 @default.
- W4313451295 cites W2124363070 @default.
- W4313451295 cites W2148143831 @default.
- W4313451295 cites W2269200031 @default.
- W4313451295 cites W2470979358 @default.
- W4313451295 cites W2471185573 @default.
- W4313451295 cites W2472706668 @default.
- W4313451295 cites W2521061481 @default.
- W4313451295 cites W2522900164 @default.
- W4313451295 cites W2529165909 @default.
- W4313451295 cites W2572699453 @default.
- W4313451295 cites W2574150412 @default.
- W4313451295 cites W2590364666 @default.
- W4313451295 cites W2606520002 @default.
- W4313451295 cites W2752339148 @default.
- W4313451295 cites W2795255197 @default.
- W4313451295 cites W2801707092 @default.
- W4313451295 cites W2803315105 @default.
- W4313451295 cites W2804079537 @default.
- W4313451295 cites W2889646458 @default.
- W4313451295 cites W2898586123 @default.
- W4313451295 cites W2905612293 @default.
- W4313451295 cites W2910834047 @default.
- W4313451295 cites W2916637148 @default.
- W4313451295 cites W2942990663 @default.
- W4313451295 cites W2943162041 @default.
- W4313451295 cites W3002103692 @default.
- W4313451295 cites W3012513281 @default.
- W4313451295 cites W3038815320 @default.
- W4313451295 cites W3047190783 @default.
- W4313451295 cites W3081120827 @default.
- W4313451295 cites W3100739965 @default.
- W4313451295 cites W3126673261 @default.
- W4313451295 cites W3128646645 @default.
- W4313451295 cites W3145444482 @default.
- W4313451295 cites W3174451482 @default.
- W4313451295 cites W3185925488 @default.
- W4313451295 cites W4206378075 @default.
- W4313451295 cites W4281492197 @default.
- W4313451295 cites W429766147 @default.
- W4313451295 doi "https://doi.org/10.1200/cci.22.00128" @default.
- W4313451295 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36596211" @default.
- W4313451295 hasPublicationYear "2023" @default.
- W4313451295 type Work @default.
- W4313451295 citedByCount "3" @default.
- W4313451295 countsByYear W43134512952023 @default.
- W4313451295 crossrefType "journal-article" @default.
- W4313451295 hasAuthorship W4313451295A5033182898 @default.
- W4313451295 hasAuthorship W4313451295A5051744803 @default.
- W4313451295 hasAuthorship W4313451295A5078343718 @default.
- W4313451295 hasAuthorship W4313451295A5091605573 @default.
- W4313451295 hasConcept C119857082 @default.
- W4313451295 hasConcept C121608353 @default.
- W4313451295 hasConcept C126322002 @default.
- W4313451295 hasConcept C143998085 @default.
- W4313451295 hasConcept C154945302 @default.
- W4313451295 hasConcept C2776135927 @default.
- W4313451295 hasConcept C2776530083 @default.
- W4313451295 hasConcept C2908647359 @default.
- W4313451295 hasConcept C34626388 @default.
- W4313451295 hasConcept C41008148 @default.
- W4313451295 hasConcept C50382708 @default.
- W4313451295 hasConcept C512399662 @default.
- W4313451295 hasConcept C71924100 @default.
- W4313451295 hasConcept C99454951 @default.
- W4313451295 hasConceptScore W4313451295C119857082 @default.
- W4313451295 hasConceptScore W4313451295C121608353 @default.
- W4313451295 hasConceptScore W4313451295C126322002 @default.
- W4313451295 hasConceptScore W4313451295C143998085 @default.
- W4313451295 hasConceptScore W4313451295C154945302 @default.
- W4313451295 hasConceptScore W4313451295C2776135927 @default.
- W4313451295 hasConceptScore W4313451295C2776530083 @default.
- W4313451295 hasConceptScore W4313451295C2908647359 @default.
- W4313451295 hasConceptScore W4313451295C34626388 @default.
- W4313451295 hasConceptScore W4313451295C41008148 @default.