Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313452357> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4313452357 abstract "Effective drug-target binding affinity (DTA) prediction is essential for drug discovery and development. The development of machine learning techniques considerably advances it. However, the cold-start problems in DTA prediction are still under-explored, which significantly degrades prediction performances on novel drugs and novel targets. In this paper, we propose a contrastive meta-learning (CML) framework to address these issues. We define drug-anchored tasks and target-anchored tasks, which enables the employment of meta-learning to accumulate common knowledge from various tasks so as to adapt to new tasks faster and better. Besides, we utilize a task inequality loss to measure task disparities and enhance model sensitivities to new tasks. We also propose a contrastive learning block (CLB) to explore correlations among drug-target pairs across tasks, which facilitates DTA prediction performance improvements. We compare CML with various baselines on two benchmarks and comparison results show that CML outperforms or achieves competitive results to its competitors." @default.
- W4313452357 created "2023-01-06" @default.
- W4313452357 creator A5009884211 @default.
- W4313452357 creator A5021269788 @default.
- W4313452357 creator A5057847421 @default.
- W4313452357 creator A5059824709 @default.
- W4313452357 creator A5077412882 @default.
- W4313452357 date "2022-12-06" @default.
- W4313452357 modified "2023-09-24" @default.
- W4313452357 title "Contrastive Meta-Learning for Drug-Target Binding Affinity Prediction" @default.
- W4313452357 cites W1972987731 @default.
- W4313452357 cites W1975147762 @default.
- W4313452357 cites W2029502000 @default.
- W4313452357 cites W2035585923 @default.
- W4313452357 cites W2086286404 @default.
- W4313452357 cites W2109991441 @default.
- W4313452357 cites W2127249498 @default.
- W4313452357 cites W2145962544 @default.
- W4313452357 cites W2785947426 @default.
- W4313452357 cites W2860192827 @default.
- W4313452357 cites W2962799101 @default.
- W4313452357 cites W3006508031 @default.
- W4313452357 cites W3018980093 @default.
- W4313452357 cites W3021338900 @default.
- W4313452357 cites W3029836473 @default.
- W4313452357 cites W3033689705 @default.
- W4313452357 cites W3096561213 @default.
- W4313452357 cites W3130274530 @default.
- W4313452357 cites W3159276577 @default.
- W4313452357 cites W3173301140 @default.
- W4313452357 cites W3175786839 @default.
- W4313452357 cites W3190638878 @default.
- W4313452357 doi "https://doi.org/10.1109/bibm55620.2022.9995372" @default.
- W4313452357 hasPublicationYear "2022" @default.
- W4313452357 type Work @default.
- W4313452357 citedByCount "0" @default.
- W4313452357 crossrefType "proceedings-article" @default.
- W4313452357 hasAuthorship W4313452357A5009884211 @default.
- W4313452357 hasAuthorship W4313452357A5021269788 @default.
- W4313452357 hasAuthorship W4313452357A5057847421 @default.
- W4313452357 hasAuthorship W4313452357A5059824709 @default.
- W4313452357 hasAuthorship W4313452357A5077412882 @default.
- W4313452357 hasConcept C119857082 @default.
- W4313452357 hasConcept C154945302 @default.
- W4313452357 hasConcept C185592680 @default.
- W4313452357 hasConcept C204321447 @default.
- W4313452357 hasConcept C2780035454 @default.
- W4313452357 hasConcept C2989108626 @default.
- W4313452357 hasConcept C41008148 @default.
- W4313452357 hasConcept C55493867 @default.
- W4313452357 hasConcept C70721500 @default.
- W4313452357 hasConcept C71924100 @default.
- W4313452357 hasConcept C86803240 @default.
- W4313452357 hasConcept C98274493 @default.
- W4313452357 hasConceptScore W4313452357C119857082 @default.
- W4313452357 hasConceptScore W4313452357C154945302 @default.
- W4313452357 hasConceptScore W4313452357C185592680 @default.
- W4313452357 hasConceptScore W4313452357C204321447 @default.
- W4313452357 hasConceptScore W4313452357C2780035454 @default.
- W4313452357 hasConceptScore W4313452357C2989108626 @default.
- W4313452357 hasConceptScore W4313452357C41008148 @default.
- W4313452357 hasConceptScore W4313452357C55493867 @default.
- W4313452357 hasConceptScore W4313452357C70721500 @default.
- W4313452357 hasConceptScore W4313452357C71924100 @default.
- W4313452357 hasConceptScore W4313452357C86803240 @default.
- W4313452357 hasConceptScore W4313452357C98274493 @default.
- W4313452357 hasFunder F4320321001 @default.
- W4313452357 hasLocation W43134523571 @default.
- W4313452357 hasOpenAccess W4313452357 @default.
- W4313452357 hasPrimaryLocation W43134523571 @default.
- W4313452357 hasRelatedWork W1984954112 @default.
- W4313452357 hasRelatedWork W2148679377 @default.
- W4313452357 hasRelatedWork W2154896031 @default.
- W4313452357 hasRelatedWork W2365243819 @default.
- W4313452357 hasRelatedWork W2936852653 @default.
- W4313452357 hasRelatedWork W3107474891 @default.
- W4313452357 hasRelatedWork W3159932082 @default.
- W4313452357 hasRelatedWork W3216512054 @default.
- W4313452357 hasRelatedWork W4296717080 @default.
- W4313452357 hasRelatedWork W942051648 @default.
- W4313452357 isParatext "false" @default.
- W4313452357 isRetracted "false" @default.
- W4313452357 workType "article" @default.