Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313452804> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4313452804 abstract "Internet of Things (IoT) systems, along with Machine Learning (ML) and Artificial Intelligence (AI), performed well in present systems. For location-based IoT systems, it is vital to accurately estimate the object’s geographical position to differentiate objects in an indoor environment. In this research study, Received Signal Strength Indicators (RSSI) and ML-based solutions are proposed for indoor localization. Although the RSSI-based position techniques are much more interested in position estimation, as it does not require any additional hardware, the precision remains a significant issue because of the considerable fading effects, multipath propagation, and different parameters in the indoor environments. This research study examines ML-based Indoor Positioning Systems (IPS) using different signal filtering techniques. In this work, RSSI signals are filtered separately using three filters, Moving Average, Gaussian and Median, and the impact on position estimation is observed. To examine each filter’s performance, the error is compared in terms of statistical figures of RMSE (Root Mean Squared Error) and R <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> (Coefficient of Determination). Most widely used Random Forest Regression (RFR) and Extra Tree Regressor (ETR) have been used as the Supervised ML techniques, and results are compared. According to the experimental results, the above filters can reduce the position estimation error to a maximum of 12 cm, which is negligible in many IPS applications with the ETR ML technique." @default.
- W4313452804 created "2023-01-06" @default.
- W4313452804 creator A5018025663 @default.
- W4313452804 creator A5047647382 @default.
- W4313452804 date "2022-12-01" @default.
- W4313452804 modified "2023-09-28" @default.
- W4313452804 title "Study on Using Signal Filtering Techniques for Machine Learning-based Indoor Positioning Systems(IPS)" @default.
- W4313452804 cites W2034179412 @default.
- W4313452804 cites W2781906172 @default.
- W4313452804 cites W2784108210 @default.
- W4313452804 cites W2901566077 @default.
- W4313452804 cites W2941747791 @default.
- W4313452804 cites W2998949556 @default.
- W4313452804 cites W3025575798 @default.
- W4313452804 cites W3034979478 @default.
- W4313452804 cites W3163893952 @default.
- W4313452804 cites W3169456387 @default.
- W4313452804 cites W3212644901 @default.
- W4313452804 doi "https://doi.org/10.1109/slaai-icai56923.2022.10002655" @default.
- W4313452804 hasPublicationYear "2022" @default.
- W4313452804 type Work @default.
- W4313452804 citedByCount "0" @default.
- W4313452804 crossrefType "proceedings-article" @default.
- W4313452804 hasAuthorship W4313452804A5018025663 @default.
- W4313452804 hasAuthorship W4313452804A5047647382 @default.
- W4313452804 hasConcept C10138342 @default.
- W4313452804 hasConcept C105795698 @default.
- W4313452804 hasConcept C106131492 @default.
- W4313452804 hasConcept C111919701 @default.
- W4313452804 hasConcept C119857082 @default.
- W4313452804 hasConcept C127162648 @default.
- W4313452804 hasConcept C139945424 @default.
- W4313452804 hasConcept C153180895 @default.
- W4313452804 hasConcept C154945302 @default.
- W4313452804 hasConcept C161218011 @default.
- W4313452804 hasConcept C162324750 @default.
- W4313452804 hasConcept C169258074 @default.
- W4313452804 hasConcept C198082294 @default.
- W4313452804 hasConcept C199360897 @default.
- W4313452804 hasConcept C2777486483 @default.
- W4313452804 hasConcept C2779843651 @default.
- W4313452804 hasConcept C31972630 @default.
- W4313452804 hasConcept C33923547 @default.
- W4313452804 hasConcept C41008148 @default.
- W4313452804 hasConcept C76155785 @default.
- W4313452804 hasConcept C79403827 @default.
- W4313452804 hasConcept C89805583 @default.
- W4313452804 hasConceptScore W4313452804C10138342 @default.
- W4313452804 hasConceptScore W4313452804C105795698 @default.
- W4313452804 hasConceptScore W4313452804C106131492 @default.
- W4313452804 hasConceptScore W4313452804C111919701 @default.
- W4313452804 hasConceptScore W4313452804C119857082 @default.
- W4313452804 hasConceptScore W4313452804C127162648 @default.
- W4313452804 hasConceptScore W4313452804C139945424 @default.
- W4313452804 hasConceptScore W4313452804C153180895 @default.
- W4313452804 hasConceptScore W4313452804C154945302 @default.
- W4313452804 hasConceptScore W4313452804C161218011 @default.
- W4313452804 hasConceptScore W4313452804C162324750 @default.
- W4313452804 hasConceptScore W4313452804C169258074 @default.
- W4313452804 hasConceptScore W4313452804C198082294 @default.
- W4313452804 hasConceptScore W4313452804C199360897 @default.
- W4313452804 hasConceptScore W4313452804C2777486483 @default.
- W4313452804 hasConceptScore W4313452804C2779843651 @default.
- W4313452804 hasConceptScore W4313452804C31972630 @default.
- W4313452804 hasConceptScore W4313452804C33923547 @default.
- W4313452804 hasConceptScore W4313452804C41008148 @default.
- W4313452804 hasConceptScore W4313452804C76155785 @default.
- W4313452804 hasConceptScore W4313452804C79403827 @default.
- W4313452804 hasConceptScore W4313452804C89805583 @default.
- W4313452804 hasLocation W43134528041 @default.
- W4313452804 hasOpenAccess W4313452804 @default.
- W4313452804 hasPrimaryLocation W43134528041 @default.
- W4313452804 hasRelatedWork W2240965754 @default.
- W4313452804 hasRelatedWork W2275058042 @default.
- W4313452804 hasRelatedWork W2360764675 @default.
- W4313452804 hasRelatedWork W3116896278 @default.
- W4313452804 hasRelatedWork W4225360065 @default.
- W4313452804 hasRelatedWork W4282839226 @default.
- W4313452804 hasRelatedWork W4283016678 @default.
- W4313452804 hasRelatedWork W4320483443 @default.
- W4313452804 hasRelatedWork W4323021782 @default.
- W4313452804 hasRelatedWork W43236265 @default.
- W4313452804 isParatext "false" @default.
- W4313452804 isRetracted "false" @default.
- W4313452804 workType "article" @default.