Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313452946> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4313452946 abstract "Recently, attention-based multiple instance learning (MIL) methods have received more concentration in histopathology whole slide image (WSI) applications. However, existing attention-based MIL methods rarely consider the cross-channel information interaction of pathology images when identifying discriminant patches. Additionally, they also have limitations on capturing the correlation between different discriminant instances for the bag-level classification. To address these challenges, we present a novel attention-based MIL model (AMIL-Trans) for breast cancer WSI classification. AMIL-Trans first embeds the efficient channel attention to realize the cross-channel interaction of pathology images, thus computing more robust features for instance selection without introducing too much computation cost. Then, it leverages vision Transformer encoder to directly aggregate selected instance features for better bag-level prediction, which effectively considers the correlation between different discriminant instances. Experiment results illustrate that AMIL-Trans respectively achieves its optimal AUC of 94.27% and 84.22% on the Camelyon-16 dataset and MSK external validation dataset, demonstrating the competitive performance compared with state-of-the-art MIL methods on breast cancer WSI classification task. The code will be available at https://github.con CunqiaoHou/AMIL-Trans." @default.
- W4313452946 created "2023-01-06" @default.
- W4313452946 creator A5010511231 @default.
- W4313452946 creator A5031722471 @default.
- W4313452946 creator A5039837606 @default.
- W4313452946 creator A5046466941 @default.
- W4313452946 creator A5056208812 @default.
- W4313452946 creator A5059602238 @default.
- W4313452946 creator A5070196338 @default.
- W4313452946 date "2022-12-06" @default.
- W4313452946 modified "2023-09-24" @default.
- W4313452946 title "Attention multiple instance learning with Transformer aggregation for breast cancer whole slide image classification" @default.
- W4313452946 cites W2772723798 @default.
- W4313452946 cites W2956228567 @default.
- W4313452946 cites W2971045153 @default.
- W4313452946 cites W3004016611 @default.
- W4313452946 cites W3013098034 @default.
- W4313452946 cites W3033382446 @default.
- W4313452946 cites W3034447539 @default.
- W4313452946 cites W3034552520 @default.
- W4313452946 cites W3099458507 @default.
- W4313452946 cites W3100084586 @default.
- W4313452946 cites W3126827997 @default.
- W4313452946 cites W3132799678 @default.
- W4313452946 cites W3135547872 @default.
- W4313452946 cites W3175971657 @default.
- W4313452946 cites W3176719058 @default.
- W4313452946 cites W4205854246 @default.
- W4313452946 cites W4223893058 @default.
- W4313452946 doi "https://doi.org/10.1109/bibm55620.2022.9994848" @default.
- W4313452946 hasPublicationYear "2022" @default.
- W4313452946 type Work @default.
- W4313452946 citedByCount "0" @default.
- W4313452946 crossrefType "proceedings-article" @default.
- W4313452946 hasAuthorship W4313452946A5010511231 @default.
- W4313452946 hasAuthorship W4313452946A5031722471 @default.
- W4313452946 hasAuthorship W4313452946A5039837606 @default.
- W4313452946 hasAuthorship W4313452946A5046466941 @default.
- W4313452946 hasAuthorship W4313452946A5056208812 @default.
- W4313452946 hasAuthorship W4313452946A5059602238 @default.
- W4313452946 hasAuthorship W4313452946A5070196338 @default.
- W4313452946 hasConcept C115961682 @default.
- W4313452946 hasConcept C119599485 @default.
- W4313452946 hasConcept C119857082 @default.
- W4313452946 hasConcept C121608353 @default.
- W4313452946 hasConcept C126322002 @default.
- W4313452946 hasConcept C127413603 @default.
- W4313452946 hasConcept C153180895 @default.
- W4313452946 hasConcept C154945302 @default.
- W4313452946 hasConcept C165801399 @default.
- W4313452946 hasConcept C41008148 @default.
- W4313452946 hasConcept C530470458 @default.
- W4313452946 hasConcept C66322947 @default.
- W4313452946 hasConcept C71924100 @default.
- W4313452946 hasConcept C75294576 @default.
- W4313452946 hasConceptScore W4313452946C115961682 @default.
- W4313452946 hasConceptScore W4313452946C119599485 @default.
- W4313452946 hasConceptScore W4313452946C119857082 @default.
- W4313452946 hasConceptScore W4313452946C121608353 @default.
- W4313452946 hasConceptScore W4313452946C126322002 @default.
- W4313452946 hasConceptScore W4313452946C127413603 @default.
- W4313452946 hasConceptScore W4313452946C153180895 @default.
- W4313452946 hasConceptScore W4313452946C154945302 @default.
- W4313452946 hasConceptScore W4313452946C165801399 @default.
- W4313452946 hasConceptScore W4313452946C41008148 @default.
- W4313452946 hasConceptScore W4313452946C530470458 @default.
- W4313452946 hasConceptScore W4313452946C66322947 @default.
- W4313452946 hasConceptScore W4313452946C71924100 @default.
- W4313452946 hasConceptScore W4313452946C75294576 @default.
- W4313452946 hasFunder F4320321001 @default.
- W4313452946 hasLocation W43134529461 @default.
- W4313452946 hasOpenAccess W4313452946 @default.
- W4313452946 hasPrimaryLocation W43134529461 @default.
- W4313452946 hasRelatedWork W133358225 @default.
- W4313452946 hasRelatedWork W1577137544 @default.
- W4313452946 hasRelatedWork W1914651075 @default.
- W4313452946 hasRelatedWork W2285470653 @default.
- W4313452946 hasRelatedWork W2508908072 @default.
- W4313452946 hasRelatedWork W2509146328 @default.
- W4313452946 hasRelatedWork W2742991909 @default.
- W4313452946 hasRelatedWork W2771450566 @default.
- W4313452946 hasRelatedWork W2996038082 @default.
- W4313452946 hasRelatedWork W7626849 @default.
- W4313452946 isParatext "false" @default.
- W4313452946 isRetracted "false" @default.
- W4313452946 workType "article" @default.