Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313452954> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4313452954 abstract "Neural network-based approaches have taken the lead in medical image segmentation with the encoder-decoder architecture. However, these approaches are still limited to one neural structure, which is short in leveraging the strengths of the three dominant structures (Convolutional Neural Network, Transformer, and Multilayer Perceptron) simultaneously. Furthermore, simple skip connections cannot effectively bridge the semantic gap between the encoder and decoder at the same level. To alleviate the above problems, this paper proposes Mixed-Net,haode which cleverly formulates a strategy to synergize three neural network structures for medical image segmentation. Specifically, our method innovatively designs two components, namely a Semantic Gap Bridging Module (SGBM) and a Global Information Compensation Decoder (GICD). Convolution-based SGBM can validly expand the receptive field and combine shallow and high-level representations by replacing original skip connections. Equally importantly, we present a GICD containing convolution and transformer, which can adequately incorporate local refinement features and global representations in the information decoding space. We evaluate Mixed-Net on 3 different medical image segmentation datasets. Surprisingly, our method sets the new state-of-the-art performance and demonstrates stronger generalization capability." @default.
- W4313452954 created "2023-01-06" @default.
- W4313452954 creator A5018073672 @default.
- W4313452954 creator A5022893468 @default.
- W4313452954 creator A5067889234 @default.
- W4313452954 creator A5086502379 @default.
- W4313452954 date "2022-12-06" @default.
- W4313452954 modified "2023-10-18" @default.
- W4313452954 title "Mixed-Net: A Mixed Architecture for Medical Image Segmentation" @default.
- W4313452954 cites W2150769593 @default.
- W4313452954 cites W2884436604 @default.
- W4313452954 cites W2928133111 @default.
- W4313452954 cites W2963946669 @default.
- W4313452954 cites W2991372685 @default.
- W4313452954 cites W2996495478 @default.
- W4313452954 cites W3042199522 @default.
- W4313452954 cites W3092462072 @default.
- W4313452954 cites W3121121992 @default.
- W4313452954 cites W3131500599 @default.
- W4313452954 cites W3133281654 @default.
- W4313452954 cites W3168491317 @default.
- W4313452954 cites W3183202665 @default.
- W4313452954 cites W3197957534 @default.
- W4313452954 cites W4212819272 @default.
- W4313452954 cites W4212875960 @default.
- W4313452954 cites W4293518183 @default.
- W4313452954 cites W4295934721 @default.
- W4313452954 doi "https://doi.org/10.1109/bibm55620.2022.9995205" @default.
- W4313452954 hasPublicationYear "2022" @default.
- W4313452954 type Work @default.
- W4313452954 citedByCount "0" @default.
- W4313452954 crossrefType "proceedings-article" @default.
- W4313452954 hasAuthorship W4313452954A5018073672 @default.
- W4313452954 hasAuthorship W4313452954A5022893468 @default.
- W4313452954 hasAuthorship W4313452954A5067889234 @default.
- W4313452954 hasAuthorship W4313452954A5086502379 @default.
- W4313452954 hasConcept C115961682 @default.
- W4313452954 hasConcept C123657996 @default.
- W4313452954 hasConcept C124504099 @default.
- W4313452954 hasConcept C154945302 @default.
- W4313452954 hasConcept C166957645 @default.
- W4313452954 hasConcept C205649164 @default.
- W4313452954 hasConcept C31972630 @default.
- W4313452954 hasConcept C41008148 @default.
- W4313452954 hasConceptScore W4313452954C115961682 @default.
- W4313452954 hasConceptScore W4313452954C123657996 @default.
- W4313452954 hasConceptScore W4313452954C124504099 @default.
- W4313452954 hasConceptScore W4313452954C154945302 @default.
- W4313452954 hasConceptScore W4313452954C166957645 @default.
- W4313452954 hasConceptScore W4313452954C205649164 @default.
- W4313452954 hasConceptScore W4313452954C31972630 @default.
- W4313452954 hasConceptScore W4313452954C41008148 @default.
- W4313452954 hasFunder F4320321001 @default.
- W4313452954 hasLocation W43134529541 @default.
- W4313452954 hasOpenAccess W4313452954 @default.
- W4313452954 hasPrimaryLocation W43134529541 @default.
- W4313452954 hasRelatedWork W1485614034 @default.
- W4313452954 hasRelatedWork W1960899470 @default.
- W4313452954 hasRelatedWork W2005185696 @default.
- W4313452954 hasRelatedWork W2044548884 @default.
- W4313452954 hasRelatedWork W2183661703 @default.
- W4313452954 hasRelatedWork W2212329603 @default.
- W4313452954 hasRelatedWork W2536634271 @default.
- W4313452954 hasRelatedWork W2566648451 @default.
- W4313452954 hasRelatedWork W2785932105 @default.
- W4313452954 hasRelatedWork W404332504 @default.
- W4313452954 isParatext "false" @default.
- W4313452954 isRetracted "false" @default.
- W4313452954 workType "article" @default.