Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313454467> ?p ?o ?g. }
- W4313454467 endingPage "244" @default.
- W4313454467 startingPage "236" @default.
- W4313454467 abstract "In the present contribution, a novel approach based on multivariate curve resolution and deep learning (DL) is proposed for quantitative mass spectrometry imaging (MSI) as a potent technique for identifying different compounds and creating their distribution maps in biological tissues without need for sample preparation. As a case study, chlordecone as a carcinogenic pesticide was quantitatively determined in mouse liver using matrix-assisted laser desorption ionization-MSI (MALDI-MSI). For this purpose, data from seven standard spots containing 0 to 20 picomoles of chlordecone and four unknown tissues from the mouse livers infected with chlordecone for 1, 5, and 10 days were analyzed using a convolutional neural network (CNN). To solve the lack of sufficient data for CNN model training, each pixel was considered as a sample, the designed CNN models were trained by pixels in training sets, and their corresponding amounts of chlordecone were obtained by multivariate curve resolution-alternating least-squares (MCR-ALS). The trained models were then externally evaluated using calibration pixels in test sets for 1, 5, and 10 days of exposure, respectively. Prediction R2 for all three data sets ranged from 0.93 to 0.96, which was superior to support vector machine (SVM) and partial least-squares (PLS). The trained CNN models were finally used to predict the amount of chlordecone in mouse liver tissues, and their results were compared with MALDI-MSI and GC-MS methods, which were comparable. Inspection of the results confirmed the validity of the proposed method." @default.
- W4313454467 created "2023-01-06" @default.
- W4313454467 creator A5009834112 @default.
- W4313454467 creator A5054745164 @default.
- W4313454467 date "2023-01-03" @default.
- W4313454467 modified "2023-09-25" @default.
- W4313454467 title "Quantitative Mass Spectrometry Imaging Using Multivariate Curve Resolution and Deep Learning: A Case Study" @default.
- W4313454467 cites W1201424081 @default.
- W4313454467 cites W1251273715 @default.
- W4313454467 cites W1987918216 @default.
- W4313454467 cites W2024349178 @default.
- W4313454467 cites W2034304212 @default.
- W4313454467 cites W2038570325 @default.
- W4313454467 cites W2039902016 @default.
- W4313454467 cites W2040611342 @default.
- W4313454467 cites W2072074442 @default.
- W4313454467 cites W2076833831 @default.
- W4313454467 cites W2077581412 @default.
- W4313454467 cites W2118246710 @default.
- W4313454467 cites W2292285134 @default.
- W4313454467 cites W2310426017 @default.
- W4313454467 cites W2408093957 @default.
- W4313454467 cites W2516991533 @default.
- W4313454467 cites W2530099019 @default.
- W4313454467 cites W2531706015 @default.
- W4313454467 cites W2590077393 @default.
- W4313454467 cites W2602034649 @default.
- W4313454467 cites W2740590133 @default.
- W4313454467 cites W2770676323 @default.
- W4313454467 cites W2790808809 @default.
- W4313454467 cites W2794284562 @default.
- W4313454467 cites W2795735736 @default.
- W4313454467 cites W2887566220 @default.
- W4313454467 cites W2888486111 @default.
- W4313454467 cites W2901218091 @default.
- W4313454467 cites W2944248482 @default.
- W4313454467 cites W2963059395 @default.
- W4313454467 cites W2969887043 @default.
- W4313454467 cites W2972214926 @default.
- W4313454467 cites W2979414185 @default.
- W4313454467 cites W2995981126 @default.
- W4313454467 cites W2999277022 @default.
- W4313454467 cites W2999610835 @default.
- W4313454467 cites W3001295768 @default.
- W4313454467 cites W3010558195 @default.
- W4313454467 cites W3011531216 @default.
- W4313454467 cites W3017240771 @default.
- W4313454467 cites W3025928057 @default.
- W4313454467 cites W3043228056 @default.
- W4313454467 cites W3047764503 @default.
- W4313454467 cites W3048961662 @default.
- W4313454467 cites W3094093743 @default.
- W4313454467 cites W3108642020 @default.
- W4313454467 cites W3111547168 @default.
- W4313454467 cites W3114500504 @default.
- W4313454467 cites W3210740626 @default.
- W4313454467 doi "https://doi.org/10.1021/jasms.2c00268" @default.
- W4313454467 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36594891" @default.
- W4313454467 hasPublicationYear "2023" @default.
- W4313454467 type Work @default.
- W4313454467 citedByCount "1" @default.
- W4313454467 countsByYear W43134544672023 @default.
- W4313454467 crossrefType "journal-article" @default.
- W4313454467 hasAuthorship W4313454467A5009834112 @default.
- W4313454467 hasAuthorship W4313454467A5054745164 @default.
- W4313454467 hasConcept C105795698 @default.
- W4313454467 hasConcept C119857082 @default.
- W4313454467 hasConcept C12267149 @default.
- W4313454467 hasConcept C138268822 @default.
- W4313454467 hasConcept C150394285 @default.
- W4313454467 hasConcept C153180895 @default.
- W4313454467 hasConcept C154945302 @default.
- W4313454467 hasConcept C160633673 @default.
- W4313454467 hasConcept C161584116 @default.
- W4313454467 hasConcept C162356407 @default.
- W4313454467 hasConcept C162711632 @default.
- W4313454467 hasConcept C165838908 @default.
- W4313454467 hasConcept C178790620 @default.
- W4313454467 hasConcept C185592680 @default.
- W4313454467 hasConcept C186060115 @default.
- W4313454467 hasConcept C198531522 @default.
- W4313454467 hasConcept C22354355 @default.
- W4313454467 hasConcept C24066741 @default.
- W4313454467 hasConcept C33923547 @default.
- W4313454467 hasConcept C41008148 @default.
- W4313454467 hasConcept C43617362 @default.
- W4313454467 hasConcept C75280812 @default.
- W4313454467 hasConcept C81363708 @default.
- W4313454467 hasConcept C86803240 @default.
- W4313454467 hasConceptScore W4313454467C105795698 @default.
- W4313454467 hasConceptScore W4313454467C119857082 @default.
- W4313454467 hasConceptScore W4313454467C12267149 @default.
- W4313454467 hasConceptScore W4313454467C138268822 @default.
- W4313454467 hasConceptScore W4313454467C150394285 @default.
- W4313454467 hasConceptScore W4313454467C153180895 @default.
- W4313454467 hasConceptScore W4313454467C154945302 @default.
- W4313454467 hasConceptScore W4313454467C160633673 @default.
- W4313454467 hasConceptScore W4313454467C161584116 @default.