Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313454704> ?p ?o ?g. }
- W4313454704 abstract "Ion mobility (IM) spectrometry provides semiorthogonal data to mass spectrometry (MS), showing promise for identifying unknown metabolites in complex non-targeted metabolomics data sets. While current literature has showcased IM-MS for identifying unknowns under near ideal circumstances, less work has been conducted to evaluate the performance of this approach in metabolomics studies involving highly complex samples with difficult matrices. Here, we present a workflow incorporating de novo molecular formula annotation and MS/MS structure elucidation using SIRIUS 4 with experimental IM collision cross-section (CCS) measurements and machine learning CCS predictions to identify differential unknown metabolites in mutant strains of Caenorhabditis elegans. For many of those ion features, this workflow enabled the successful filtering of candidate structures generated by in silico MS/MS predictions, though in some cases, annotations were challenged by significant hurdles in instrumentation performance and data analysis. While for 37% of differential features we were able to successfully collect both MS/MS and CCS data, fewer than half of these features benefited from a reduction in the number of possible candidate structures using CCS filtering due to poor matching of the machine learning training sets, limited accuracy of experimental and predicted CCS values, and lack of candidate structures resulting from the MS/MS data. When using a CCS error cutoff of ±3%, on average, 28% of candidate structures could be successfully filtered. Herein, we identify and describe the bottlenecks and limitations associated with the identification of unknowns in non-targeted metabolomics using IM-MS to focus and provide insights into areas requiring further improvement." @default.
- W4313454704 created "2023-01-06" @default.
- W4313454704 creator A5016842373 @default.
- W4313454704 creator A5043714487 @default.
- W4313454704 creator A5066604685 @default.
- W4313454704 creator A5067015942 @default.
- W4313454704 creator A5067140042 @default.
- W4313454704 creator A5068233381 @default.
- W4313454704 creator A5070033946 @default.
- W4313454704 creator A5083695545 @default.
- W4313454704 creator A5084015210 @default.
- W4313454704 creator A5087509293 @default.
- W4313454704 date "2023-01-03" @default.
- W4313454704 modified "2023-10-16" @default.
- W4313454704 title "Unknown Metabolite Identification Using Machine Learning Collision Cross-Section Prediction and Tandem Mass Spectrometry" @default.
- W4313454704 cites W1965038686 @default.
- W4313454704 cites W1969727638 @default.
- W4313454704 cites W1971227313 @default.
- W4313454704 cites W1997463565 @default.
- W4313454704 cites W2059327215 @default.
- W4313454704 cites W2075999343 @default.
- W4313454704 cites W2096769282 @default.
- W4313454704 cites W2125069590 @default.
- W4313454704 cites W2160566248 @default.
- W4313454704 cites W2171431072 @default.
- W4313454704 cites W2179948434 @default.
- W4313454704 cites W2433393132 @default.
- W4313454704 cites W2536128108 @default.
- W4313454704 cites W2563804944 @default.
- W4313454704 cites W2565586364 @default.
- W4313454704 cites W2596100941 @default.
- W4313454704 cites W2740265172 @default.
- W4313454704 cites W2740955623 @default.
- W4313454704 cites W2802909948 @default.
- W4313454704 cites W2902734986 @default.
- W4313454704 cites W2913182573 @default.
- W4313454704 cites W2917207851 @default.
- W4313454704 cites W2922522932 @default.
- W4313454704 cites W2925495008 @default.
- W4313454704 cites W3008673945 @default.
- W4313454704 cites W3082061703 @default.
- W4313454704 cites W3095743442 @default.
- W4313454704 cites W3129026034 @default.
- W4313454704 cites W3157411047 @default.
- W4313454704 cites W4206447491 @default.
- W4313454704 cites W4310043295 @default.
- W4313454704 cites W4311703785 @default.
- W4313454704 doi "https://doi.org/10.1021/acs.analchem.2c03749" @default.
- W4313454704 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36595469" @default.
- W4313454704 hasPublicationYear "2023" @default.
- W4313454704 type Work @default.
- W4313454704 citedByCount "6" @default.
- W4313454704 countsByYear W43134547042023 @default.
- W4313454704 crossrefType "journal-article" @default.
- W4313454704 hasAuthorship W4313454704A5016842373 @default.
- W4313454704 hasAuthorship W4313454704A5043714487 @default.
- W4313454704 hasAuthorship W4313454704A5066604685 @default.
- W4313454704 hasAuthorship W4313454704A5067015942 @default.
- W4313454704 hasAuthorship W4313454704A5067140042 @default.
- W4313454704 hasAuthorship W4313454704A5068233381 @default.
- W4313454704 hasAuthorship W4313454704A5070033946 @default.
- W4313454704 hasAuthorship W4313454704A5083695545 @default.
- W4313454704 hasAuthorship W4313454704A5084015210 @default.
- W4313454704 hasAuthorship W4313454704A5087509293 @default.
- W4313454704 hasConcept C116834253 @default.
- W4313454704 hasConcept C124101348 @default.
- W4313454704 hasConcept C162356407 @default.
- W4313454704 hasConcept C177212765 @default.
- W4313454704 hasConcept C185592680 @default.
- W4313454704 hasConcept C21565614 @default.
- W4313454704 hasConcept C31827203 @default.
- W4313454704 hasConcept C41008148 @default.
- W4313454704 hasConcept C43617362 @default.
- W4313454704 hasConcept C59822182 @default.
- W4313454704 hasConcept C70721500 @default.
- W4313454704 hasConcept C77088390 @default.
- W4313454704 hasConcept C86803240 @default.
- W4313454704 hasConceptScore W4313454704C116834253 @default.
- W4313454704 hasConceptScore W4313454704C124101348 @default.
- W4313454704 hasConceptScore W4313454704C162356407 @default.
- W4313454704 hasConceptScore W4313454704C177212765 @default.
- W4313454704 hasConceptScore W4313454704C185592680 @default.
- W4313454704 hasConceptScore W4313454704C21565614 @default.
- W4313454704 hasConceptScore W4313454704C31827203 @default.
- W4313454704 hasConceptScore W4313454704C41008148 @default.
- W4313454704 hasConceptScore W4313454704C43617362 @default.
- W4313454704 hasConceptScore W4313454704C59822182 @default.
- W4313454704 hasConceptScore W4313454704C70721500 @default.
- W4313454704 hasConceptScore W4313454704C77088390 @default.
- W4313454704 hasConceptScore W4313454704C86803240 @default.
- W4313454704 hasFunder F4320337351 @default.
- W4313454704 hasFunder F4320337361 @default.
- W4313454704 hasLocation W43134547041 @default.
- W4313454704 hasLocation W43134547042 @default.
- W4313454704 hasOpenAccess W4313454704 @default.
- W4313454704 hasPrimaryLocation W43134547041 @default.
- W4313454704 hasRelatedWork W2007646009 @default.
- W4313454704 hasRelatedWork W2081035100 @default.
- W4313454704 hasRelatedWork W2207831393 @default.
- W4313454704 hasRelatedWork W2497175360 @default.