Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313454903> ?p ?o ?g. }
- W4313454903 endingPage "105" @default.
- W4313454903 startingPage "95" @default.
- W4313454903 abstract "ConspectusNanothermometry is increasingly demanded in frontier research in physics, chemistry, materials science and engineering, and biomedicine. An ideal thermometer should have features of reliable temperature interpretation, high sensitivity, fast response, minimum disturbance of the target’s temperature, applicability in a variety of environments, and a large working temperature range. For applications in nanosystems, high spatial resolution is also desirable. Such requirements impose great challenges in nanothermometry since the shrinking of the sensor volume usually leads to a reduction in sensitivity.Diamond with nitrogen-vacancy (NV) centers provides opportunities for nanothermometry. NV center spins have sharp resonances due to their superb coherence. NV centers are multimodal sensors. They can directly sense magnetic fields, electric fields, temperature, pressure, and nuclear spins and, through proper transduction, measure other quantities such as the pH and deformation. In particular, their spin resonance frequencies vary with temperature, making them a promising thermometer. The high thermal conductivity, high hardness, chemical stability, and biocompatibility of diamond enable reliable and fast temperature sensing in complex environments ranging from erosive liquids to live systems. Chemical processing of diamond surfaces allows various functionalities such as targeting. The small size and the targeting capability of nanodiamonds then enable site-specific temperature sensing with nanoscale spatial resolution. However, the sensitivity of NV-based nanothermometry is yet to meet the requirement of practical systems with a large gap of a few orders of magnitude. On the other hand, although NV-based quantum sensing works well from 0.3 to 600 K, extending the sensing scheme to high temperature remains challenging due to uncertainty in identifying the exact physical limits and possible solution at elevated temperatures.This Account focuses on our efforts to enhance the temperature sensitivity and widen the working temperature range of diamond-based nanothermometry. We start with explaining the working principle and features of NV-based thermometry with examples of applications. Then a transducer-based concept is introduced with practical schemes to improve the sensitivity of the nanodiamond thermometer. Specifically, we show that the temperature signal can be transduced and amplified by adopting hybrid structures of nanodiamond and magnetic nanoparticles, which results in a record temperature sensitivity of 76 μK/√Hz. We also demonstrate quantum sensing with NV at high temperatures of up to 1000 K by adopting a pulsed heating–cooling scheme to carry out the spin polarization and readout at room temperature and the spin manipulation (sensing) at high temperatures. Finally, unsolved problems and future endeavors of diamond nanothermometry are discussed." @default.
- W4313454903 created "2023-01-06" @default.
- W4313454903 creator A5001805827 @default.
- W4313454903 creator A5008094396 @default.
- W4313454903 creator A5080658884 @default.
- W4313454903 date "2023-01-03" @default.
- W4313454903 modified "2023-10-16" @default.
- W4313454903 title "Nanothermometry with Enhanced Sensitivity and Enlarged Working Range Using Diamond Sensors" @default.
- W4313454903 cites W1486540506 @default.
- W4313454903 cites W1543621043 @default.
- W4313454903 cites W1815860655 @default.
- W4313454903 cites W1979284216 @default.
- W4313454903 cites W1980583020 @default.
- W4313454903 cites W1983383923 @default.
- W4313454903 cites W1995664068 @default.
- W4313454903 cites W2002641385 @default.
- W4313454903 cites W2011529228 @default.
- W4313454903 cites W2029232010 @default.
- W4313454903 cites W2036547226 @default.
- W4313454903 cites W2037003015 @default.
- W4313454903 cites W2049867217 @default.
- W4313454903 cites W2060274041 @default.
- W4313454903 cites W2102718916 @default.
- W4313454903 cites W2127166382 @default.
- W4313454903 cites W2141878472 @default.
- W4313454903 cites W2159974629 @default.
- W4313454903 cites W2166687037 @default.
- W4313454903 cites W2203692639 @default.
- W4313454903 cites W2266446510 @default.
- W4313454903 cites W2273842183 @default.
- W4313454903 cites W2285593825 @default.
- W4313454903 cites W2417133054 @default.
- W4313454903 cites W2520131578 @default.
- W4313454903 cites W2734379716 @default.
- W4313454903 cites W2767234887 @default.
- W4313454903 cites W2790727705 @default.
- W4313454903 cites W2802854313 @default.
- W4313454903 cites W2885383591 @default.
- W4313454903 cites W2918901246 @default.
- W4313454903 cites W2941187419 @default.
- W4313454903 cites W2957451436 @default.
- W4313454903 cites W2996289331 @default.
- W4313454903 cites W3000039218 @default.
- W4313454903 cites W3011702433 @default.
- W4313454903 cites W3014097088 @default.
- W4313454903 cites W3018099478 @default.
- W4313454903 cites W3026422050 @default.
- W4313454903 cites W3037447387 @default.
- W4313454903 cites W3082442613 @default.
- W4313454903 cites W3097309983 @default.
- W4313454903 cites W3101024234 @default.
- W4313454903 cites W3101234939 @default.
- W4313454903 cites W3101431451 @default.
- W4313454903 cites W3102816869 @default.
- W4313454903 cites W3103869002 @default.
- W4313454903 cites W3104680705 @default.
- W4313454903 cites W3112966920 @default.
- W4313454903 cites W3119268997 @default.
- W4313454903 cites W3154727901 @default.
- W4313454903 cites W3156131968 @default.
- W4313454903 cites W3157873136 @default.
- W4313454903 cites W3159941157 @default.
- W4313454903 cites W3211529151 @default.
- W4313454903 cites W3212322640 @default.
- W4313454903 cites W4238129914 @default.
- W4313454903 cites W4254085718 @default.
- W4313454903 cites W50229829 @default.
- W4313454903 doi "https://doi.org/10.1021/acs.accounts.2c00576" @default.
- W4313454903 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36594628" @default.
- W4313454903 hasPublicationYear "2023" @default.
- W4313454903 type Work @default.
- W4313454903 citedByCount "2" @default.
- W4313454903 countsByYear W43134549032023 @default.
- W4313454903 crossrefType "journal-article" @default.
- W4313454903 hasAuthorship W4313454903A5001805827 @default.
- W4313454903 hasAuthorship W4313454903A5008094396 @default.
- W4313454903 hasAuthorship W4313454903A5080658884 @default.
- W4313454903 hasConcept C116696211 @default.
- W4313454903 hasConcept C121332964 @default.
- W4313454903 hasConcept C127413603 @default.
- W4313454903 hasConcept C159985019 @default.
- W4313454903 hasConcept C161166931 @default.
- W4313454903 hasConcept C171250308 @default.
- W4313454903 hasConcept C192562407 @default.
- W4313454903 hasConcept C21200559 @default.
- W4313454903 hasConcept C24326235 @default.
- W4313454903 hasConcept C26873012 @default.
- W4313454903 hasConcept C2776921476 @default.
- W4313454903 hasConcept C2777155165 @default.
- W4313454903 hasConcept C2778870898 @default.
- W4313454903 hasConcept C49040817 @default.
- W4313454903 hasConcept C58053490 @default.
- W4313454903 hasConcept C62520636 @default.
- W4313454903 hasConcept C84114770 @default.
- W4313454903 hasConcept C89143813 @default.
- W4313454903 hasConceptScore W4313454903C116696211 @default.
- W4313454903 hasConceptScore W4313454903C121332964 @default.
- W4313454903 hasConceptScore W4313454903C127413603 @default.