Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313454913> ?p ?o ?g. }
- W4313454913 endingPage "13" @default.
- W4313454913 startingPage "1" @default.
- W4313454913 abstract "As cancer with the highest morbidity and mortality in the world, lung cancer is characterized by pulmonary nodules in the early stage. The detection of pulmonary nodules is an important method for the early detection of lung cancer, which can greatly improve the survival rate of lung cancer patients. However, the accuracy of conventional detection methods for lung nodules is low. With the development of medical imaging technology, deep learning plays an increasingly important role in medical image detection, and pulmonary nodules can be accurately detected by CT images. Based on the above, a pulmonary nodule detection method based on deep learning is proposed. In the candidate nodule detection stage, the multiscale features and Faster R-CNN, a general-purpose detection framework based on deep learning, were combined together to improve the detection of small-sized lung nodules. In the false-positive nodule filtration stage, a 3D convolutional neural network based on multiscale fusion is designed to reduce false-positive nodules. The experiment results show that the candidate nodule detection model based on Faster R-CNN integrating multiscale features has achieved a sensitivity of 98.6%, 10% higher than that of the other single-scale model, the proposed method achieved a sensitivity of 90.5% at the level of 4 false-positive nodules per scan, and the CPM score reached 0.829. The results are higher than methods in other works of literature. It can be seen that the detection method of pulmonary nodules based on multiscale fusion has a higher detection rate for small nodules and improves the classification performance of true and false-positive pulmonary nodules. This will help doctors when making a lung cancer diagnosis." @default.
- W4313454913 created "2023-01-06" @default.
- W4313454913 creator A5005910215 @default.
- W4313454913 creator A5028262514 @default.
- W4313454913 creator A5034254930 @default.
- W4313454913 creator A5034408158 @default.
- W4313454913 creator A5043720965 @default.
- W4313454913 creator A5072238333 @default.
- W4313454913 creator A5080875823 @default.
- W4313454913 date "2022-12-21" @default.
- W4313454913 modified "2023-10-14" @default.
- W4313454913 title "Pulmonary Nodule Detection Based on Multiscale Feature Fusion" @default.
- W4313454913 cites W1439484735 @default.
- W4313454913 cites W1884191083 @default.
- W4313454913 cites W2071342347 @default.
- W4313454913 cites W2095660073 @default.
- W4313454913 cites W2103004421 @default.
- W4313454913 cites W2112467442 @default.
- W4313454913 cites W2128553277 @default.
- W4313454913 cites W2208036992 @default.
- W4313454913 cites W2327068099 @default.
- W4313454913 cites W2732063980 @default.
- W4313454913 cites W2888436377 @default.
- W4313454913 cites W2888860107 @default.
- W4313454913 cites W2888975659 @default.
- W4313454913 cites W3027197058 @default.
- W4313454913 cites W3039753000 @default.
- W4313454913 cites W3043384115 @default.
- W4313454913 cites W3046888355 @default.
- W4313454913 cites W3047460589 @default.
- W4313454913 cites W3134900589 @default.
- W4313454913 cites W3159318670 @default.
- W4313454913 cites W3174522949 @default.
- W4313454913 cites W3187795767 @default.
- W4313454913 cites W3191675159 @default.
- W4313454913 cites W3210655559 @default.
- W4313454913 cites W4220865112 @default.
- W4313454913 cites W4289454094 @default.
- W4313454913 cites W639708223 @default.
- W4313454913 doi "https://doi.org/10.1155/2022/8903037" @default.
- W4313454913 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36590762" @default.
- W4313454913 hasPublicationYear "2022" @default.
- W4313454913 type Work @default.
- W4313454913 citedByCount "3" @default.
- W4313454913 countsByYear W43134549132023 @default.
- W4313454913 crossrefType "journal-article" @default.
- W4313454913 hasAuthorship W4313454913A5005910215 @default.
- W4313454913 hasAuthorship W4313454913A5028262514 @default.
- W4313454913 hasAuthorship W4313454913A5034254930 @default.
- W4313454913 hasAuthorship W4313454913A5034408158 @default.
- W4313454913 hasAuthorship W4313454913A5043720965 @default.
- W4313454913 hasAuthorship W4313454913A5072238333 @default.
- W4313454913 hasAuthorship W4313454913A5080875823 @default.
- W4313454913 hasBestOaLocation W43134549131 @default.
- W4313454913 hasConcept C108583219 @default.
- W4313454913 hasConcept C126322002 @default.
- W4313454913 hasConcept C126838900 @default.
- W4313454913 hasConcept C138885662 @default.
- W4313454913 hasConcept C142724271 @default.
- W4313454913 hasConcept C146357865 @default.
- W4313454913 hasConcept C151730666 @default.
- W4313454913 hasConcept C153180895 @default.
- W4313454913 hasConcept C154945302 @default.
- W4313454913 hasConcept C2776256026 @default.
- W4313454913 hasConcept C2776401178 @default.
- W4313454913 hasConcept C2776731575 @default.
- W4313454913 hasConcept C2777714996 @default.
- W4313454913 hasConcept C41008148 @default.
- W4313454913 hasConcept C41895202 @default.
- W4313454913 hasConcept C71924100 @default.
- W4313454913 hasConcept C81363708 @default.
- W4313454913 hasConcept C86803240 @default.
- W4313454913 hasConcept C95922358 @default.
- W4313454913 hasConceptScore W4313454913C108583219 @default.
- W4313454913 hasConceptScore W4313454913C126322002 @default.
- W4313454913 hasConceptScore W4313454913C126838900 @default.
- W4313454913 hasConceptScore W4313454913C138885662 @default.
- W4313454913 hasConceptScore W4313454913C142724271 @default.
- W4313454913 hasConceptScore W4313454913C146357865 @default.
- W4313454913 hasConceptScore W4313454913C151730666 @default.
- W4313454913 hasConceptScore W4313454913C153180895 @default.
- W4313454913 hasConceptScore W4313454913C154945302 @default.
- W4313454913 hasConceptScore W4313454913C2776256026 @default.
- W4313454913 hasConceptScore W4313454913C2776401178 @default.
- W4313454913 hasConceptScore W4313454913C2776731575 @default.
- W4313454913 hasConceptScore W4313454913C2777714996 @default.
- W4313454913 hasConceptScore W4313454913C41008148 @default.
- W4313454913 hasConceptScore W4313454913C41895202 @default.
- W4313454913 hasConceptScore W4313454913C71924100 @default.
- W4313454913 hasConceptScore W4313454913C81363708 @default.
- W4313454913 hasConceptScore W4313454913C86803240 @default.
- W4313454913 hasConceptScore W4313454913C95922358 @default.
- W4313454913 hasFunder F4320335787 @default.
- W4313454913 hasLocation W43134549131 @default.
- W4313454913 hasLocation W43134549132 @default.
- W4313454913 hasLocation W43134549133 @default.
- W4313454913 hasOpenAccess W4313454913 @default.
- W4313454913 hasPrimaryLocation W43134549131 @default.