Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313454919> ?p ?o ?g. }
- W4313454919 abstract "Dealing with the ill-posed and non-unique nature of the non-linear geophysical inverse problem via local optimizers requires the use of some regularization methods, constraints, and prior information about the Earth's complex interior. Another difficulty is that the success of local search algorithms depends on a well-designed initial model located close to the parameter set providing the global minimum. On the other hand, global optimization and metaheuristic algorithms that have the ability to scan almost the entire model space do not need an assertive initial model. Thus, these approaches are increasingly incorporated into parameter estimation studies and are also gaining more popularity in the geophysical community. In this study we present the Barnacles Mating Optimizer (BMO), a recently proposed global optimizer motivated by the special mating behavior of barnacles, to interpret magnetic anomalies. This is the first example in the literature of BMO application to a geophysical inverse problem. After performing modal analyses and parameter tuning processes, BMO has been tested on simulated magnetic anomalies generated from hypothetical models and subsequently applied to three real anomalies that are chromite deposit, uranium deposit and Mesozoic dike. A second moving average (SMA) scheme to eliminate regional anomalies from observed anomalies has been examined and certified. Post-inversion uncertainty assessment analyses have been also implemented to understand the reliability of the solutions achieved. Moreover, BMO's solutions for convergence rate, stability, robustness and accuracy have been compared with the solutions of the commonly used standard Particle Swarm Optimization (sPSO) algorithm. The results have shown that the BMO algorithm can scan the model parameter space more extensively without affecting its ability to consistently approach the unique global minimum in this presented inverse problem. We, therefore, recommend the use of competitive BMO in model parameter estimation studies performed with other geophysical methods." @default.
- W4313454919 created "2023-01-06" @default.
- W4313454919 creator A5006920796 @default.
- W4313454919 creator A5009684440 @default.
- W4313454919 creator A5011900788 @default.
- W4313454919 creator A5021169746 @default.
- W4313454919 creator A5037727561 @default.
- W4313454919 creator A5047369573 @default.
- W4313454919 date "2022-12-30" @default.
- W4313454919 modified "2023-10-17" @default.
- W4313454919 title "Magnetic anomaly inversion through the novel barnacles mating optimization algorithm" @default.
- W4313454919 cites W1901332870 @default.
- W4313454919 cites W1967102245 @default.
- W4313454919 cites W1968644110 @default.
- W4313454919 cites W1978865778 @default.
- W4313454919 cites W1983357911 @default.
- W4313454919 cites W1993850619 @default.
- W4313454919 cites W2000731415 @default.
- W4313454919 cites W2012031152 @default.
- W4313454919 cites W2015654651 @default.
- W4313454919 cites W2039523529 @default.
- W4313454919 cites W2045962330 @default.
- W4313454919 cites W2048235403 @default.
- W4313454919 cites W2051565793 @default.
- W4313454919 cites W2056231937 @default.
- W4313454919 cites W2060511356 @default.
- W4313454919 cites W2060950333 @default.
- W4313454919 cites W2064935684 @default.
- W4313454919 cites W2078640880 @default.
- W4313454919 cites W2085069328 @default.
- W4313454919 cites W2086298072 @default.
- W4313454919 cites W2089063137 @default.
- W4313454919 cites W2093602761 @default.
- W4313454919 cites W2096157885 @default.
- W4313454919 cites W2133285135 @default.
- W4313454919 cites W2138867555 @default.
- W4313454919 cites W2150487061 @default.
- W4313454919 cites W2157300960 @default.
- W4313454919 cites W2160108919 @default.
- W4313454919 cites W2166364496 @default.
- W4313454919 cites W2170661738 @default.
- W4313454919 cites W2211646671 @default.
- W4313454919 cites W2222057026 @default.
- W4313454919 cites W2314102787 @default.
- W4313454919 cites W2341015382 @default.
- W4313454919 cites W2508513255 @default.
- W4313454919 cites W2546848279 @default.
- W4313454919 cites W2559306231 @default.
- W4313454919 cites W2569890821 @default.
- W4313454919 cites W2607591994 @default.
- W4313454919 cites W2734407467 @default.
- W4313454919 cites W2736678282 @default.
- W4313454919 cites W2755339499 @default.
- W4313454919 cites W2800415484 @default.
- W4313454919 cites W2808000866 @default.
- W4313454919 cites W2897543719 @default.
- W4313454919 cites W2902559752 @default.
- W4313454919 cites W2913601492 @default.
- W4313454919 cites W2945582210 @default.
- W4313454919 cites W2969582047 @default.
- W4313454919 cites W2984191725 @default.
- W4313454919 cites W2999146216 @default.
- W4313454919 cites W3005785086 @default.
- W4313454919 cites W3027937877 @default.
- W4313454919 cites W3033540608 @default.
- W4313454919 cites W3045531060 @default.
- W4313454919 cites W3108346862 @default.
- W4313454919 cites W3125375632 @default.
- W4313454919 cites W3157013907 @default.
- W4313454919 cites W3163489340 @default.
- W4313454919 cites W3184772435 @default.
- W4313454919 cites W3186496322 @default.
- W4313454919 cites W3199104541 @default.
- W4313454919 cites W3203696106 @default.
- W4313454919 cites W4214807052 @default.
- W4313454919 cites W4220709521 @default.
- W4313454919 cites W4234656230 @default.
- W4313454919 cites W4241543470 @default.
- W4313454919 cites W4244921930 @default.
- W4313454919 cites W4249870550 @default.
- W4313454919 cites W4250574975 @default.
- W4313454919 cites W4286817074 @default.
- W4313454919 cites W4292415779 @default.
- W4313454919 cites W4296685819 @default.
- W4313454919 cites W4306966817 @default.
- W4313454919 cites W4307960346 @default.
- W4313454919 cites W1990394398 @default.
- W4313454919 doi "https://doi.org/10.1038/s41598-022-26265-0" @default.
- W4313454919 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36585437" @default.
- W4313454919 hasPublicationYear "2022" @default.
- W4313454919 type Work @default.
- W4313454919 citedByCount "8" @default.
- W4313454919 countsByYear W43134549192023 @default.
- W4313454919 crossrefType "journal-article" @default.
- W4313454919 hasAuthorship W4313454919A5006920796 @default.
- W4313454919 hasAuthorship W4313454919A5009684440 @default.
- W4313454919 hasAuthorship W4313454919A5011900788 @default.
- W4313454919 hasAuthorship W4313454919A5021169746 @default.
- W4313454919 hasAuthorship W4313454919A5037727561 @default.
- W4313454919 hasAuthorship W4313454919A5047369573 @default.