Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313454936> ?p ?o ?g. }
- W4313454936 abstract "In animal research, automation of affective states recognition has so far mainly addressed pain in a few species. Emotional states remain uncharted territories, especially in dogs, due to the complexity of their facial morphology and expressions. This study contributes to fill this gap in two aspects. First, it is the first to address dog emotional states using a dataset obtained in a controlled experimental setting, including videos from (n = 29) Labrador Retrievers assumed to be in two experimentally induced emotional states: negative (frustration) and positive (anticipation). The dogs' facial expressions were measured using the Dogs Facial Action Coding System (DogFACS). Two different approaches are compared in relation to our aim: (1) a DogFACS-based approach with a two-step pipeline consisting of (i) a DogFACS variable detector and (ii) a positive/negative state Decision Tree classifier; (2) An approach using deep learning techniques with no intermediate representation. The approaches reach accuracy of above 71% and 89%, respectively, with the deep learning approach performing better. Secondly, this study is also the first to study explainability of AI models in the context of emotion in animals. The DogFACS-based approach provides decision trees, that is a mathematical representation which reflects previous findings by human experts in relation to certain facial expressions (DogFACS variables) being correlates of specific emotional states. The deep learning approach offers a different, visual form of explainability in the form of heatmaps reflecting regions of focus of the network's attention, which in some cases show focus clearly related to the nature of particular DogFACS variables. These heatmaps may hold the key to novel insights on the sensitivity of the network to nuanced pixel patterns reflecting information invisible to the human eye." @default.
- W4313454936 created "2023-01-06" @default.
- W4313454936 creator A5009770853 @default.
- W4313454936 creator A5012891967 @default.
- W4313454936 creator A5013888576 @default.
- W4313454936 creator A5029084803 @default.
- W4313454936 creator A5031903932 @default.
- W4313454936 creator A5036499221 @default.
- W4313454936 creator A5037725489 @default.
- W4313454936 creator A5046654709 @default.
- W4313454936 creator A5052630874 @default.
- W4313454936 creator A5061678929 @default.
- W4313454936 creator A5085141470 @default.
- W4313454936 date "2022-12-30" @default.
- W4313454936 modified "2023-10-01" @default.
- W4313454936 title "Explainable automated recognition of emotional states from canine facial expressions: the case of positive anticipation and frustration" @default.
- W4313454936 cites W1588539311 @default.
- W4313454936 cites W1969736828 @default.
- W4313454936 cites W2001315093 @default.
- W4313454936 cites W2006217447 @default.
- W4313454936 cites W2007431552 @default.
- W4313454936 cites W2009375902 @default.
- W4313454936 cites W2046306942 @default.
- W4313454936 cites W2060242139 @default.
- W4313454936 cites W2068193521 @default.
- W4313454936 cites W2123562126 @default.
- W4313454936 cites W2139816676 @default.
- W4313454936 cites W2152627593 @default.
- W4313454936 cites W2164319935 @default.
- W4313454936 cites W2194775991 @default.
- W4313454936 cites W2395639500 @default.
- W4313454936 cites W2485861135 @default.
- W4313454936 cites W2576007665 @default.
- W4313454936 cites W2586609531 @default.
- W4313454936 cites W2600843525 @default.
- W4313454936 cites W2621367454 @default.
- W4313454936 cites W2729768855 @default.
- W4313454936 cites W2735866559 @default.
- W4313454936 cites W2763206272 @default.
- W4313454936 cites W2765793020 @default.
- W4313454936 cites W2768079795 @default.
- W4313454936 cites W2768921899 @default.
- W4313454936 cites W2775666429 @default.
- W4313454936 cites W2790605163 @default.
- W4313454936 cites W2806070179 @default.
- W4313454936 cites W2887114371 @default.
- W4313454936 cites W2901335288 @default.
- W4313454936 cites W2952032506 @default.
- W4313454936 cites W2958771045 @default.
- W4313454936 cites W2962858109 @default.
- W4313454936 cites W2963150697 @default.
- W4313454936 cites W2963847595 @default.
- W4313454936 cites W2980445882 @default.
- W4313454936 cites W2980463312 @default.
- W4313454936 cites W2995885361 @default.
- W4313454936 cites W3000716014 @default.
- W4313454936 cites W3007708573 @default.
- W4313454936 cites W3008604073 @default.
- W4313454936 cites W3015386026 @default.
- W4313454936 cites W3075058775 @default.
- W4313454936 cites W3080451182 @default.
- W4313454936 cites W3096200616 @default.
- W4313454936 cites W3116286104 @default.
- W4313454936 cites W3119621549 @default.
- W4313454936 cites W3129050301 @default.
- W4313454936 cites W3130185182 @default.
- W4313454936 cites W3159481202 @default.
- W4313454936 cites W3166405193 @default.
- W4313454936 cites W3182546273 @default.
- W4313454936 cites W3191960191 @default.
- W4313454936 cites W3201716537 @default.
- W4313454936 cites W3205076367 @default.
- W4313454936 cites W3214746690 @default.
- W4313454936 cites W3216065183 @default.
- W4313454936 cites W4214858592 @default.
- W4313454936 cites W4221104872 @default.
- W4313454936 cites W4226036028 @default.
- W4313454936 cites W4280528148 @default.
- W4313454936 cites W4280652872 @default.
- W4313454936 cites W4281732150 @default.
- W4313454936 cites W4282568497 @default.
- W4313454936 cites W4310022040 @default.
- W4313454936 doi "https://doi.org/10.1038/s41598-022-27079-w" @default.
- W4313454936 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36585439" @default.
- W4313454936 hasPublicationYear "2022" @default.
- W4313454936 type Work @default.
- W4313454936 citedByCount "3" @default.
- W4313454936 countsByYear W43134549362023 @default.
- W4313454936 crossrefType "journal-article" @default.
- W4313454936 hasAuthorship W4313454936A5009770853 @default.
- W4313454936 hasAuthorship W4313454936A5012891967 @default.
- W4313454936 hasAuthorship W4313454936A5013888576 @default.
- W4313454936 hasAuthorship W4313454936A5029084803 @default.
- W4313454936 hasAuthorship W4313454936A5031903932 @default.
- W4313454936 hasAuthorship W4313454936A5036499221 @default.
- W4313454936 hasAuthorship W4313454936A5037725489 @default.
- W4313454936 hasAuthorship W4313454936A5046654709 @default.
- W4313454936 hasAuthorship W4313454936A5052630874 @default.
- W4313454936 hasAuthorship W4313454936A5061678929 @default.
- W4313454936 hasAuthorship W4313454936A5085141470 @default.