Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313454943> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4313454943 abstract "Numerous scientific, health care, and industrial applications are showing increasing interest in developing optical pH sensors with low-cost, high precision that cover a wide pH range. Although serious efforts, the development of high accuracy and cost-effectiveness, remains challenging. In this perspective, we present the implementation of the machine learning technique on the common pH paper for precise pH-value estimation. Further, we develop a simple, flexible, and free precise mobile application based on a machine learning algorithm to predict the accurate pH value of a solution using an available commercial pH paper. The common light conditions were studied under different light intensities of 350, 200, and 20 Lux. The models were trained using 2689 experimental values without a special instrument control. The pH range of 1: 14 is covered by an interval of ~ 0.1 pH value. The results show a significant relationship between pH values and both the red color and green color, in contrast to the poor correlation by the blue color. The K Neighbors Regressor model improves linearity and shows a significant coefficient of determination of 0.995 combined with the lowest errors. The free, publicly accessible online and mobile application was developed and enables the highly precise estimation of the pH value as a function of the RGB color code of typical pH paper. Our findings could replace higher expensive pH instruments using handheld pH detection, and an intelligent smartphone system for everyone, even the chef in the kitchen, without the need for additional costly and time-consuming experimental work." @default.
- W4313454943 created "2023-01-06" @default.
- W4313454943 creator A5020704814 @default.
- W4313454943 creator A5056728511 @default.
- W4313454943 creator A5086264432 @default.
- W4313454943 creator A5091541014 @default.
- W4313454943 date "2022-12-30" @default.
- W4313454943 modified "2023-10-18" @default.
- W4313454943 title "Facile and highly precise pH-value estimation using common pH paper based on machine learning techniques and supported mobile devices" @default.
- W4313454943 cites W1967955151 @default.
- W4313454943 cites W2032337589 @default.
- W4313454943 cites W2042200090 @default.
- W4313454943 cites W2102965080 @default.
- W4313454943 cites W2124089608 @default.
- W4313454943 cites W2142073124 @default.
- W4313454943 cites W2312720164 @default.
- W4313454943 cites W2347129741 @default.
- W4313454943 cites W2597747340 @default.
- W4313454943 cites W2643034827 @default.
- W4313454943 cites W2663029271 @default.
- W4313454943 cites W2945932330 @default.
- W4313454943 cites W2996815539 @default.
- W4313454943 cites W3000411869 @default.
- W4313454943 cites W3015197526 @default.
- W4313454943 cites W3049235151 @default.
- W4313454943 cites W3083449775 @default.
- W4313454943 cites W3084673918 @default.
- W4313454943 cites W3095650796 @default.
- W4313454943 cites W3129039627 @default.
- W4313454943 cites W3166406815 @default.
- W4313454943 cites W3195756861 @default.
- W4313454943 cites W3198880743 @default.
- W4313454943 cites W3204156524 @default.
- W4313454943 cites W3208800818 @default.
- W4313454943 cites W3208869604 @default.
- W4313454943 cites W4205941116 @default.
- W4313454943 cites W4232166090 @default.
- W4313454943 doi "https://doi.org/10.1038/s41598-022-27054-5" @default.
- W4313454943 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36585481" @default.
- W4313454943 hasPublicationYear "2022" @default.
- W4313454943 type Work @default.
- W4313454943 citedByCount "1" @default.
- W4313454943 countsByYear W43134549432023 @default.
- W4313454943 crossrefType "journal-article" @default.
- W4313454943 hasAuthorship W4313454943A5020704814 @default.
- W4313454943 hasAuthorship W4313454943A5056728511 @default.
- W4313454943 hasAuthorship W4313454943A5086264432 @default.
- W4313454943 hasAuthorship W4313454943A5091541014 @default.
- W4313454943 hasBestOaLocation W43134549431 @default.
- W4313454943 hasConcept C111919701 @default.
- W4313454943 hasConcept C119857082 @default.
- W4313454943 hasConcept C154945302 @default.
- W4313454943 hasConcept C186967261 @default.
- W4313454943 hasConcept C41008148 @default.
- W4313454943 hasConcept C82990744 @default.
- W4313454943 hasConceptScore W4313454943C111919701 @default.
- W4313454943 hasConceptScore W4313454943C119857082 @default.
- W4313454943 hasConceptScore W4313454943C154945302 @default.
- W4313454943 hasConceptScore W4313454943C186967261 @default.
- W4313454943 hasConceptScore W4313454943C41008148 @default.
- W4313454943 hasConceptScore W4313454943C82990744 @default.
- W4313454943 hasFunder F4320330007 @default.
- W4313454943 hasIssue "1" @default.
- W4313454943 hasLocation W43134549431 @default.
- W4313454943 hasLocation W43134549432 @default.
- W4313454943 hasLocation W43134549433 @default.
- W4313454943 hasOpenAccess W4313454943 @default.
- W4313454943 hasPrimaryLocation W43134549431 @default.
- W4313454943 hasRelatedWork W2338579811 @default.
- W4313454943 hasRelatedWork W2765904913 @default.
- W4313454943 hasRelatedWork W2961085424 @default.
- W4313454943 hasRelatedWork W3046775127 @default.
- W4313454943 hasRelatedWork W4285260836 @default.
- W4313454943 hasRelatedWork W4286629047 @default.
- W4313454943 hasRelatedWork W4301343772 @default.
- W4313454943 hasRelatedWork W4306321456 @default.
- W4313454943 hasRelatedWork W4306674287 @default.
- W4313454943 hasRelatedWork W4224009465 @default.
- W4313454943 hasVolume "12" @default.
- W4313454943 isParatext "false" @default.
- W4313454943 isRetracted "false" @default.
- W4313454943 workType "article" @default.